首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Lower SS  Kirshenbaum S  Orians CM 《Oecologia》2003,136(3):402-411
The distribution and abundance of herbivores on plants growing under different environmental conditions may depend upon preference and/or performance. Soil nutrients and water availability are key determinants of herbivore distribution, as both influence plant growth and tissue quality. However, the effects of water on plant quality may depend upon the availability of nutrients and vice versa. Surprisingly few studies have examined the interactions between the two. We investigated the effects of soil nutrient and water availability on (1) the growth and chemistry of the silky willow (Salix sericea Marshall), and (2) the preference and performance of the imported willow leaf beetle (Plagiodera versicolora Laichartig). We conducted two common garden experiments using a similar 2x2 fully factorial design with two levels of soil nutrients (low, high) and two levels of water availability (field capacity, flooded). In the first experiment (larval performance), larval development time and pupal weight were not influenced by nutrient or water availability to the plant. This occurred despite the fact that plants in the high nutrient treatments had higher protein concentration and lower foliar concentrations of the phenolic glycoside 2'-cinnamoylsalicortin. In the second experiment (adult preference), we caged four plants (one from each treatment) and released beetles into cages. We found that plant growth and leaf protein depended upon the interaction between nutrient and water availability. Plant growth was greatest in the high nutrient-field capacity treatment and leaf protein was greatest in the high nutrient-flooded treatment. In contrast, adults settled and oviposited preferentially on the high nutrient treatment under flooded conditions, but we found no evidence of interactions between nutrients and water on preference. Thus, at least under flooded conditions nutrients affect adult preference. We also found that foliar protein was correlated positively with adult oviposition preference and per capita egg production. Our results, then, suggest that soil nutrients can influence adult preference, and that adults choose high-quality hosts (high protein) that promote egg production.  相似文献   

2.
While foliar nitrogen (N) content of host plants depends on environmental conditions, N content of herbivorous insects may remain relatively constant due to homeostasis. However, it is unknown to what extent insects can maintain their body elemental composition against natural variation in host plant quality. The present study examined the performance and N content of a willow leaf beetle, Plagiodera versicolora Laicharting (Coleoptera: Chrysomelidae), when fed leaves of host willow, Salix eriocarpa Franchet et Savatier (Salicaceae), with varying nutritional status. Water content, toughness, and N content of willow leaves varied seasonally, and they affected performance of the leaf beetle. The leaf beetle achieved high performance when fed young leaves. On the other hand, the N content of the leaf beetle changed little, and it was independent of that of willow leaves, indicating strong N homeostasis of the leaf beetle. We discussed the function of N homeostasis in herbivorous insects in tritrophic level interactions.  相似文献   

3.
Abstract.  1. We examined the plant-mediated indirect effects of the stem-boring moth Endoclita excrescens (Lepidoptera: Hepialidae) on the leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) in three willow species, Salix gilgiana , S. eriocarpa , and S. serissaefolia.
2. When the stem-boring moth larvae damaged stems in the previous year, willows were stimulated to produce vigorously growing lateral shoots on these stems. These new lateral shoots were significantly longer and the upper leaves had significantly higher nitrogen and water content than current-year shoots on unbored stems, although the carbon content and leaf dry mass were not different between lateral and current-year shoots.
3. In the field, leaf beetle larvae and adults had significantly greater densities on lateral shoots of bored stems than on current-year shoots of unbored stems. A laboratory experiment showed that female beetles had significantly greater mass and fecundity when fed on leaves of newly-emerged lateral shoots. Thus, the stem-boring moth had a positive effect on the temporally and spatially separated leaf beetle by increasing resource availability by inducing compensatory regrowth.
4. The strength of the indirect effects on the density and performance of the leaf beetle differed among willow species, because there was interspecific variation in host quality and herbivore-induced changes in plant traits. In particular, we suggest that the differences in magnitude of the changes among willow species in shoot length and leaf nitrogen content greatly affected the strength of the plant-regrowth mediated indirect effect, coupled with host-plant preference of the leaf beetle.  相似文献   

4.
Although plant quality can indirectly increase the performance of the third trophic level by bottom-up cascading effects, the mechanisms of this indirect effect are still unclear. In this study the carbon–nitrogen stoichiometry in a tri-trophic system consisting of the willow, a leaf beetle, and a predatory ladybird beetle were examined to determine the mechanisms of the bottom-up cascading effect. The bottom-up cascade is initiated by increasing leaf nitrogen, because of artificial cutting of willow trees. The relative growth rate (RGR) of the leaf beetle increased when fed on cut willow leaves, because of the high leaf nitrogen in the cut willows. Ladybird beetle RGR also increased when fed on leaf beetles fed on cut willow leaves. The increased RGR of the ladybirds cannot be explained by the quality of the prey, however, because leaf beetle nitrogen was not affected by host plant quality. Thus, the carbon–nitrogen stoichiometry could not be a mechanism of the bottom-up cascade through multiple trophic levels.  相似文献   

5.
In a greenhouse experiment we examined the effect of willow genotype and irrigation regime (moderate drought and well‐watered) on plant growth parameters, foliar nitrogen, and phenolic concentrations, as well as on the preference and performance of the blue leaf beetle, Phratora vulgatissima (L.) (Coleoptera: Chrysomelidae). The 10 vegetatively propagated willow genotypes in the experiments were F2 full‐sibling hybrids, originated from a cross between Salix viminalis (L.) (Salicaceae) (high in condensed tannins) and Salix dasyclados (L.) (Salicaceae) (rich in phenolic glycosides). Insect bioassays were conducted on detached leaves in Petri dishes as well as with free‐living insects on intact potted plants. The 10‐week long irrigation treatments caused statistically significant phenotypic differences in the potted willow saplings. Total biomass was somewhat higher in the well‐watered treatment. The root to total biomass ratio was higher in the drought‐treatment plants. There was significant genotypic variation in foliar nitrogen concentrations, and they were higher in the drought‐treatment plants. There was also a strong genotypic variation in each of the phenolic substances analyzed. Condensed tannins, which accounted for the greatest proportion of total phenolic mass, were higher in the well‐watered treatment. There was, however, no difference in levels of the other phenolics (salicylates, cinnamic acid, flavonoids, and chlorogenic acid) between irrigation treatments. The sum of these phenolics was higher in the well‐watered treatment. There was a strong variation in P. vulgatissima larval development on different willow genotypes, and larval performance was negatively correlated with levels of salicylates and cinnamic acid. There was, however, no effect of irrigation treatment on larval performance. Phratora vulgatissima preferred to feed on well‐watered plants, and we found a preference for oviposition there, but neither feeding nor oviposition site preference was affected by willow genotype. Adult feeding and oviposition preferences were not correlated with larval performance.  相似文献   

6.
Concentration of atmospheric CO2 and temperature have both been rising for the last three decades. In this century, the temperature has been predicted to rise by 2–5 °C and the CO2 concentration to double. These changes may affect the primary and secondary metabolism of plants and thus have implications for other trophic levels. However, the biotic interactions in changing climate conditions are poorly known. In this study, two questions were addressed: (i) How will climate change affect growth and the amounts of secondary compounds in flexible plant species? and (ii) How will this affect herbivores living on this species. Four clones of the dark‐leaved willow (Salix myrsinifolia (Salisb.)) seedlings were grown in closed‐top chambers with two controlled factors: concentration of atmospheric CO2 and temperature (T). There were four combinations of these factors, each combination replicated four times (total of 16 chambers): (i) Control CO2 (350 ppm) and control T, (ii) Elevated CO2 (700 ppm) and control T, (iii) Control CO2 and elevated T (2 °C), and (iv) Elevated CO2 and elevated T. Stem growth and aerial biomass of the plants were determined; and the leaf phenolics, nitrogen and water concentrations were analysed. In addition the growth rate of larvae and feeding preference of adults of a specialist herbivore, the chrysomelid beetle Phratora vitellinae (L.), on the treated willow leaves were measured. Elevated temperature and CO2 concentration increased the stem biomass and elevated CO2 increased leaf biomass and total aerial biomass of the willows. Patterns of biomass allocation were different in different temperature treatments. At elevated temperature there was less branch and leaf material in relation to stems than at the control temperature. Moreover, patterns of biomass allocation differed among clones. CO2 enhancement increased the specific leaf weight (SLW) and reduced both water and nitrogen content of the leaves, however, leaf area was unaffected by the treatments. Carbon dioxide (CO2) and T enhancement reduced the concentrations of several phenolic compounds in the leaves. Phenolic compounds, nutrients, and water in the leaves might be diluted partly due to increased carbon allocation to different structures (e.g. thickening of cell wall and increase of trichomes, etc.). In some cases plant clones showed specific responses to treatments. The CO2 enhancement reduced the relative growth rate (RGR) of the beetle larvae, and in contrast, temperature elevation increased it. Adult beetles did not clearly discriminate between willow leaves grown in different T and CO2 environments, but tended to eat more leaf material from chambers with doubled CO2 concentration. At elevated CO2 adult beetles may need to eat more leaf material in order to reproduce, which may in turn prolong the life cycles, increasing the risk of being eaten and possibly affecting ability to overwinter successfully. Overall, climate change may significantly modify the dynamic interaction between willow and beetle populations.  相似文献   

7.
Classical biological weed control is based on the premise that introducing specialized natural enemies from the native range re‐establishes herbivore control of plant invaders, ultimately leading to negative population growth rates. Evidence from past biocontrol programs suggests that herbivores are not solely responsible for shaping plant demography. Diverse environmental conditions in the introduced range may not only affect demography, but also influence top‐down control of target plants. We investigated how flooding affects impacts of predators (top‐down) and plant quality (bottom‐up) on performance of two leaf‐beetles, Galerucella calmariensis L. and Galerucella pusilla Duftschmid (Coleoptera: Chrysomelidae: Galerucini), released in North America as biocontrol agents of purple loosestrife, Lythrum salicaria L. (Lythraceae). Predation and flooding regime have been linked to low leaf‐beetle recruitment at sites where insects failed to attain outbreak populations. Predator exclusion experiments at adjacent flooded and non‐flooded sites indicated a positive effect of flooding on leaf‐beetle survival for all developmental stages, whereas predator exposure had little effect. There was no difference in predation rates at sites with successful or failed purple loosestrife control, questioning the importance of predation in limiting growth and impact of these biocontrol agents’ populations. Effect of flooding on purple loosestrife quality was evaluated in a common garden study where plants were grown under different flooding treatments. Plants grown in flooded soil had higher water content and lower tannic acid concentration than plants grown in well‐drained soil. Consistent with field observations, leaf‐beetle oviposition rate and survival were higher on flooded plants. Results indicate that both bottom‐up and top‐down forces operate on Galerucella populations, yet their relative strength is mediated by flooding regime. Ignoring intricacies of plant‐herbivore and trophic interactions in the introduced range appears to be a major handicap for the improvement of weed biocontrol programs.  相似文献   

8.
Prudic KL  Oliver JC  Bowers MD 《Oecologia》2005,143(4):578-587
This study examined the effects of increased leaf nitrogen in natural host-plants (Plantago spp.) on female oviposition preference, larval performance, and larval chemical defense of the butterfly Junonia coenia. Increased availability of soil nutrients caused the host-plant’s foliar nitrogen to increase and its chemical defense to decrease. Larval performance did not correlate with increases in foliar nitrogen. Larval growth rate and survival were equivalent across host-plant treatments. However, larvae raised on fertilized host-plants showed concomitant decreases in chemical defense as compared to larvae reared on unfertilized host-plants. Since most butterfly larvae cannot move long distances during their first few instars and are forced to feed upon the plant on which they hatched, J. coenia larval chemical defense is determined, in large part, by female oviposition choice. Female butterflies preferred host-plants with high nitrogen over host-plants with low nitrogen; however, this preference was also mediated by plant chemical defense. Female butterflies preferred more chemically defended host-plants when foliar nitrogen was equivalent between host-plants. J. coenia larvae experience intense predation in the field, especially when larvae are not chemically well defended. Any qualitative or quantitative variation in plant allelochemical defense has fitness consequences on these larvae. Thus, these results indicate that females may be making sub-optimal oviposition decisions under a nutrient-enriched regime, when predators are present. Given the recent increase in fertilizer application and nitrogen deposition on the terrestrial landscape, these interactions between female preference, larval performance, and larval chemical defense may result in long-term changes in population dynamics and persistence of specialist insects.  相似文献   

9.
We studied the relationship between plant stress intensity and herbivore response in the grass miner Chromatomyia milii (Kaltenbach) (Diptera: Agromyzidae) on nutrient stressed plants. We subjected the host grass Holcus lanatus (Poaceae) to a range of nutrient treatments (0%, 25%, 50%, 100%, and 200% Hoagland nutrient solution) and recorded plant stress intensity (plant growth and foliar chlorophyll a and b levels) and offspring performance of C. milii. Plant growth and foliar chlorophyll a and b levels decreased from the 25% treatment to the 200% treatment. The plant stress intensity from the 0% treatment was equal to or only slightly higher than the 25% treatment. Offspring survival of C. milii was lower on the 100% and the 200% treatments than on the other treatments. Offspring development time and pupal mass did not differ between the nutrient treatments. Offspring survival of C. milii showed a monotonic non‐linear increase with decreasing plant stress intensity. These results clearly show that an excess of nutrients may result in plant stress and reduced herbivore performance.  相似文献   

10.
Undamaged plants are known to suffer less damage from herbivores when previously exposed to airborne factors from neighboring plants that are either infested or artificially damaged. However, to date, the effects of such a defensive phenomenon on performance of herbivorous insects have not been clearly shown. Here, we studied such effects in an interaction between a willow plant, Salix eriocarpa Franchet et Savatier (Salicales: Salicaceae), and a specialist leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae). In a wind tunnel, uninfested willow plants were placed downwind of willow plants infested by leaf beetle larvae for 4 days. As a control, we placed uninfested plants downwind of uninfested plants in the tunnel. After exposure, downwind plants were served to leaf beetle larvae. Pupal weight, larval survival rates, and the leaf area consumed by larvae all decreased significantly, and larval developmental duration increased significantly, when larvae fed on willow plants downwind of infested plants were compared with those downwind of uninfested plants. These results showed that airborne factors from infested willow plants negatively affected the performance of leaf beetle larvae. Further studies are needed to identify the active factor(s) from the infested willow plants affecting the performance of leaf beetle larvae.  相似文献   

11.
We quantified differences in leaf traits between upper and lower crowns of a deciduous oak, Quercus acutissima, and examined feeding preference, consumption and performance of the Japanese oak silkmoth, Antheraea yamamai, for those leaves. Upper‐crown leaves had significantly smaller area, larger dry mass per area, greater thickness, lower water content, higher nitrogen content and a higher N/C ratio than lower‐crown leaves. When simultaneously offered upper‐crown and lower‐crown leaves, moth larvae consumed a significantly larger amount of the former. However, when fed with either upper‐crown or lower‐crown leaves (no choice), they consumed a significantly larger amount of the latter. Female larvae reared on upper‐crown leaves had a significantly smaller fresh weight, but attained a significantly larger pupal fresh and dry weight, with a significantly higher relative growth rate than those on lower‐crown leaves. Although, like female larvae, male larvae had a significantly smaller fresh weight when reared on upper‐crown leaves, they had a significantly larger value only for pupal dry weight. These results suggest that: (i) larvae ingest a greater amount of lower‐crown leaves to compensate for the lower nitrogen content of the foliage, resulting in having an excess of water because of the higher water content of the foliage; (ii) feeding preference for upper‐crown leaves accords with better performance (with respect to dry pupal weight and relative growth rate) on the foliage; (iii) better performance is explained by a higher nitrogen content and N/C ratio of the upper‐crown foliage; and (iv) the effects of leaf quality on performance differ between sexes.  相似文献   

12.
Four species of riparian vegetation (alder, birch, willow and poplar) were fertilized with nitrogen, phosphorus, nitrogen + phosphorus, or no fertilizer (control). The resulting leaf detritus (leached but not microbially colonized) was offered to a stream shredder, Hydatophylax variabilis (Trichoptera: Limnephilidae). In one experiment, shredder consumption of leaf detritus from different nutrient treatments (within tree species) was compared, and in a second experiment, consumption of different tree species (within nutrient treatments) was compared. Larvae preferred leaf detritus from nitrogen + phosphorus treatments (except in poplar where nitrogen treatment was preferred). Alder was preferred over other tree species for all treatments. Chemical and physical analyses of leaf litter showed differences between tree species and nutrient treatments in nutrient content, tannins and leaf toughness. Leaf consumption by larvae was positively associated with nitrogen content and negatively associated with condensed tannin content. Species composition and nutrient status of riparian vegetation may strongly influence detrital food webs in streams.  相似文献   

13.
1. Mobile organisms such as emergent aquatic insects can subsidise land with aquatic nutrients, creating a link between terrestrial and aquatic ecosystems. 2. Deposition of aquatic insects on land produces bottom‐up effects in arthropod detritivore communities and may also affect plants and plant–herbivore interactions. 3. To investigate the effects of insect deposition on plant–herbivore interactions, we conducted a field experiment and surveys of tealeaf willow (Salicaceae; Salix phylicifolia Coste) and July highflyer caterpillars (Geometridae; Hydriomena furcata Thunberg) at lakes in Northeast Iceland with either high‐ or low‐midge density and deposition to land. 4. It was found that willow at high‐midge lakes had 8–11% higher nitrogen content compared with willow at low‐midge lakes. In addition, natural caterpillar density was 4–6 times higher and caterpillars were 72% heavier at high‐midge lakes than low‐midge lakes. 5. A fully reciprocal caterpillar transplant experiment among willow at high‐ and low‐midge lakes was performed to separate the influence of habitat and midge effects on caterpillar performance. 6. After transplant, pupae of July Highflyer caterpillars were on average 11% heavier at high‐midge sites compared with low‐midge sites. However, this difference was not statistically significant. 7. The present findings indicate that cross‐ecosystem subsidies in the form of aquatic insects can increase plant foliar quality and the abundance of insect herbivores in recipient ecosystems.  相似文献   

14.
The leaf beetle Plagiodera versicolora (Coleoptera: Chrysomelidae) is a specialist herbivore, all of whose mobile stages feed on the leaves of salicaceous plants. Both the larval and adult stages of the ladybird Aiolocaria hexaspilota (Coleoptera: Coccinellidae) are dominant natural enemies of the larvae of the leaf beetle. To clarify the role of plant volatiles in prey‐finding behaviour of A. hexaspilota, the olfactory responses of the ladybird in a Y‐tube olfactometer are studied. The ladybird adults show no preference for willow plants Salix eriocarpa that are infested by leaf beetle adults (nonprey) over that for intact plants but move more to the willow plants infested by leaf beetle larvae (prey) than to intact plants. Moreover, ladybird larvae show no preference for willow plants infested by leaf beetle larvae or adults over intact plants. Using gas chromatography‐mass spectrometry, six volatile compounds are released in larger amounts in the headspace of willow plants infested by leaf beetle larvae than in the headspace of willow plants infested by leaf beetle adults. In addition, the total amount of volatiles emitted from willow plants that are either intact or infested by leaf beetle adults is much smaller than that from willow plants infested by leaf beetle larvae. These results indicate that volatiles from S. eriocarpa infested by P. versicolora inform A. hexaspilota adults about the presence of the most suitable stage of their prey, whereas A. hexaspilota larvae do not use such information.  相似文献   

15.
Seedlings of three elm species with variable susceptibility to the elm leaf beetle (Pyrrhalta luteola Müller) (Coleoptera: Chrysomelidae) were subjected to three water stress treatments (no stress, low stress, and high stress) in a greenhouse experiment. The species tested were Ulmus pumila L. (Siberian elm = highly susceptible), U. parvifolia Jacq. (Chinese elm = resistant), and U. americana L. (American elm = intermediate). The seedlings were analyzed for changes in the levels of selected host traits (trichome density, foliar concentration of nitrogen [N], phosphorus [P], potassium [K], calcium [Ca], magnesium [Mg], iron [Fe], and manganese [Mn]), some of which had previously been implicated in resistance to the elm leaf beetle. Density of leaf abaxial surface trichomes (simple, bulbous, and total trichomes) and foliar Fe and Mg concentrations increased significantly in the highly susceptible Siberian elms under water stress. In contrast, stress reduced trichome density in the moderately susceptible American elms, but it had no effect on levels of foliar mineral nutrients. The stress treatments had no influence on host traits in the resistant Chinese elms. The results suggest that environmental stress can alter plant traits that are likely involved in determining resistance of elms to the elm leaf beetle.  相似文献   

16.
Abstract 1. Many Salicaceae species naturally form hybrid swarms with parental and hybrid taxa that differ in secondary chemical profile and in resistance to herbivores. Theoretically, the differential mortality in the seedling stage can lead to changes in trait expression and alter subsequent interactions between plants and herbivores. This study examines whether herbivory by the generalist slug Arion subfuscus, which causes extensive mortality in young willow seedlings, causes shifts in (a) the foliar chemistry of F2 willow hybrids (Salix sericea and Salix eriocephala), and (b) the subsequent susceptibility to Japanese Beetles, Popillia japonica. 2. In 2001, two populations of F2 seedlings were generated: those that survived slug herbivory (80–90% of seedlings placed in the field were killed by the slugs) were designated as S-plants, whereas C-plants (controls) experienced no mortality. 3. Common garden experiments with cuttings from these populations, in 2001 and 2002, revealed extensive variation in the phenolic chemistry of F2 hybrids, but revealed no significant difference between S- and C-plants, although the levels of foliar nutrients, proteins and nitrogen tended to be higher in S-plants. 4. Concentrations of salicortin and 2′-cinnamoylsalicortin explained 55 and 38% of the the variation in leaf damage caused by Japanese beetles, and secondary chemistry was highly correlated within replicate clones (salicortin R2= 0.85, 2-cinnamoylsalicortin R2= 0.77, condensed tannins R2= 0.68). 5. Interestingly, Japanese beetle damage and condensed tannins were positively correlated within the S-plants, but not in the C-plants, suggesting that slugs had selected for plants with a positive relationship between tannins and P. japonica damage. This is unlikely to be a consequence of a preference for tannins, but is suggested to be related to the elevated nutrient levels in the S-plants, perhaps in combination with the complex-binding properties of tannins. 6. The damage was highly correlated within replicate clones and a model choice analysis suggested that Japanese beetle damage may be explained by four factors: concentrations of salicortin, condensed tannins, and nitrogen, as well as the specific leaf area (thick leaves were damaged less).  相似文献   

17.
甘南高寒草甸植物元素含量与土壤因子对坡向梯度的响应   总被引:1,自引:0,他引:1  
刘旻霞 《生态学报》2017,37(24):8275-8284
通过测定甘南高寒草甸不同坡向条件下25科86种植物叶片氮(N)、磷(P)、钾(K)含量、有机碳(C)含量、叶片含水量和相对叶绿素(SPAD)值,以及不同坡向的土壤含水量、有机碳、全氮、全磷含量等土壤指标,分析了不同坡向植物叶片元素含量与土壤环境因子之间的关系。研究结果表明,在南坡-北坡梯度上,随着土壤含水量的增加,植物叶片P含量、叶K含量和叶片含水量显著增加,而相对叶绿素显著降低。土壤养分含量与植物叶片P、叶K含量和叶含水量显著正相关,与叶片相对叶绿素显著负相关。说明不同坡向条件下叶片养分含量受土壤因子的影响显著,土壤的水分及养分状况对植物叶片元素含量的贡献不同。土壤含水量是坡向梯度上影响植物叶片特征的最主要因子。坡向梯度上土壤含水量对植物叶片各种元素含量的影响和植物叶片含水量对不同土壤因子的响应模式支持了生长在南坡的植物能以提高水分和养分利用效率而适应南坡较为干旱和贫瘠的生境。  相似文献   

18.
Summary This study examined the effects of intraspecific variation in leaf nitrogen and water content on the growth, consumption, conversion efficiency and nitrogen use of Colias butterfly larvae. Pest and non-pest Colias philodice eriphyle larvae and Colias eurytheme larvae were fed field-collected alfalfa (Medicago sativa) and vetch (Vicia americana) leaves in laboratory experiments. In all treatments, at least one indicator of larval growth performance was positively correlated with leaf nitrogen content, which supports the view that nitrogen is a limiting nutrient for larval growth. The benefits associated with eating leaves with high nitrogen content included higher growth rates, conversion efficiencies, nitrogen accumulation rates and larval nitrogen contents. Over the ranges examined in this study, variation in leaf nitrogen content (2.8–7.0% dry wt) affected larval growth more than variation in leaf water content (66–79% fresh wt). Pest and non-pest C. p. eriphyle responded alike to variation in the leaf nitrogen content of vetch, but there were differences between populations on alfalfa. Pest larvae were more sensitive to variation in leaf water content than non-pest larve. The differences between these populations may be due to specific adaptations resulting from the shift to alfala by pest Colias. It is suggested that herbivores' responses to intraspecific variation in leaf nitrogen content may have important consequences for the evolution of plant defenses and nutrient allocation patterns, and for agricultural pest management.  相似文献   

19.
Partial rootzone drying (PRD) is widely investigated as an effective irrigation technique, resulting in higher water use efficiency and yield for plants growing under mild water deficit. Nutrition is another important factor affecting plant yield, but nutrient acquisition has only rarely been considered in conjunction with PRD. Here we investigate the interaction between water and fertilizer supply in a pot experiment with oilseed rape (Brassica napus L.). Eight treatments were set up for the experiment, a factorial combination of four watering regimes (100% control watering at both sides of the plants; 50% control watering at both sides of the plants; 50% fixed watering applied only to one side of the plants; 50% alternate watering applied alternately to both sides of the plant) and two fertilizer placement levels (uniform over the entire pot, and patchy supplied to one side). For the 50% watering treatments, the total amount of water supplied to the plants was the same, only the pattern of application differed between treatments. Also the total fertilizer applied was the same for all treatments. Oilseed rape roots foraged effectively for water and nutrients resulting in relatively small differences in nutrient uptake and above-ground growth among the water-deficit treatments. Placing fertilizer at one side of the plants increased nutrient uptake, but there were differences between the water treatments and interactions with water uptake. Alternate watering resulted in the highest growth, as a result of the largest nitrogen and phosphorus uptake with the smallest root investment among the three water deficit treatments. Fixed watering resulted in poorest performance when fertilizer was uniformly spread throughout the pot, because the plants were unable to acquire the nutrients on the dry side. Our results show that PRD can be well combined with patchy fertilizer supply, but that reduced nutrient uptake may be expected when nutrients are supplied in parts of the soil volume that remain too dry. Responsible Editor: Yan Li  相似文献   

20.
Summary Quantitative genetic parameters for leaf physiological and whole-plant aspects of nitrogen-use efficiency in Brassica camprestris L. were estimated in three nutrient treatments in the greenhouse. Narrow-sense heritabilities and genetic correlations varied across treatments for some traits. Sire effects were significant for leaf nitrogen content in near-optimal and super-optimal, but not in suboptimal nutrient treatments. Additive genetic variation for two estimates of leaf physiological nitrogen-use efficiency (nitrogen-based photosynthetic capacity and leaf carbon: nitrogen ratio) was significant only in the suboptimal nutrient treatment. Area-based photosynthetic capacity, on the other hand, exhibited no heritable variation in any nutrient treatment. Heritability estimates of aboveground biomass and flower production were greatest in sub- and super-optimal treatments, respectively. Negative genetic correlations between leaf nitrogen content and both estimates of leaf nitrogen-use efficiency were evident in the super-optimal treatment. Aboveground biomass and leaf nitrogen-use efficiency were positively correlated in the suboptimal treatment, suggesting that growth differences were due in part to the efficiency with which nitrogen was utilized in physiological processes. Although implications for breeding may differ for different sources of germ plasm or different measures of performance or yield, selection for improved whole-plant performance through increased nitrogen-use efficiency should proceed best in suboptimal nutrient treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号