首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detailed molecular structure of the complex formed by the apoprotein from porcine high density lipoprotein and dimyristoly phosphatidylcholine (lecithin) has been investigated by a range of physical techniques. The complex, an oblate ellipsoid with major axis 11.0 nm and minor axis 5.5 nm (see the accompanying paper), is comprised of a section of lecithin bilayer with apoprotein at the surface. The main site of interaction between protein and lipid is in the lipid glycerophosphorylcholine group region; as with native high density lipoprotein the surface of the particle consists of a mosaic of lecithin polar groups and protein. The formation of this mosaic reduces the cooperativity of the lecithin chain motions and changes the curvature of the lipid-water interface, as compared to a bilayer. Otherwise, there are no major changes in lecithin motions indicating that no strong binding of lipid to protein occurs. The interaction involves the intercalation of amphipathic, 60% alpha-helical, apoprotein molecules among the lecithin molecules so that the protein residues at the lipid-water interface. The apoprotein has a high affinity for the lipid-water interface but specific lipid-protein interactions are not involved.  相似文献   

2.
Phospholipid dispersions spontaneously form oriented lamellar multilayers when dried onto glass slides. These oriented multilayers form useful model systems for studying the molecular dynamics of lipid bilayers. In order to examine the effects of osmium tetroxide on the orientation and motion of hydrocarbon chains in lipid bilayers, lecithin multilayers containing the spin label 3-doxyl-5α-cholestane (the 4′,4′-dimethyloxazolidine-N-oxyl derivative of 5α-cholestan-3-one) were prepared and examined by electron spin resonance spectroscopy. In egg lecithin multilayers at room temperature and 81% relative humidity the osmium tetroxide causes nearly complete loss of orientation and severe reduction of molecular motion. In contrast, the high degree of order in l-α-dipalmitoyl lecithin multilayers is not affected by exposure to osmium tetroxide vapors. Experiments are also reported on macroscopically disordered lecithin preparations, and the data support the conclusions drawn from the ordered lecithin multilayers that rotational mobility of the probe is severely reduced by fixation of the lipid chains.A simple mathematical model has been developed to account for the amplitude of the high-frequency (τ < 10?8 sec) restricted y-axis anisotropic motion occurring in the bilayer plane. Since the y-axis is roughly parallel to the molecular axis of the rigid steroid spin label, this model enables quantitative comparisons of various degrees of restricted motion about the molecular axis.  相似文献   

3.
In many lipid-containing systems (intact membranes, lipid-water and proteinlipid-water phases) the hydrocarbon chains are known to undergo a reversible temperature-dependent transition between a highly disordered (type α) and a partly ordered (type β) conformation; in the β conformation the chains, stiff and all parallel, are packed with rotational disorder according to a two-dimensional hexagonal lattice. This work describes an X-ray diffraction and freeze-fracturing electron microscope study of the phases involved in this conformational transition. Several lipid-water systems were studied: mitochondrial lipids; phosphatidic acid, synthetic lecithin; hen egg lecithin. The conformational transition is found to be a complex phenomenon dependent upon the chemical composition of the lipids, the amount of water and temperature. When the lipid is a pure chemical species the transition involves two phases; one with all the chains in the α conformation the other with all the chains in the β conformation. If the chains are heterogeneous, then from the onset of the transition from type α, they segregate into regions with different conformation, presumably according to their length and degree of saturation. One of the phases (Lαβ) consists of regularly stacked lipid lamellae, each of which is a disordered mosaic of two types of domains; one with the chains in the α, the other in the β conformation. In another phase (Lγ) each lipid lamella is formed by one monolayer of type α and one of type β, joined by their apolar faces. Two other phases (Pγ and Pαβ) display two-dimensional lattices, and consist of lipid lamellae distorted by wave-like ripples, with an ordered segregation of domains in the α and in the β conformation. The number and the structure of the phases involved in the conformational transition are strongly dependent upon the heterogeneity of the hydrocarbon chains and upon the charge and hydration of the polar groups. The results of this study have a bearing on the conformation of the chains in membranes, and on the possible biological significance of conformational transitions.  相似文献   

4.
The ultrastructure of aggregates formed by mixtures of pig erythrocyte lecithin, cholesterol and globoside in aqueous systems was studied by electron microscopy and X-ray diffraction. Globoside and lecithin in up to equimolar amounts formed a lamellar mesophase, although the structure of the lamellae was perturbed. Mixtures containing excess globoside formed complex tubular or reticular aggregates. Cholesterol appeared to promote mixing of lecithin and globoside. The flexibility gradient of the hydrocarbon (hc) region of the lipid bilayers was studied using electron spin resonance (esr) spectroscopy of various nitroxide-labelled stearic acid probes. Globoside in equimolar amounts greatly perturbed the order parameters of lecithin bilayers, reducing the fluidity of the hc region and flattening the flexibility gradient near the polar (p) surface. The effect of globoside on lecithin-cholesterol bilayers was not so pronounced, since the latter was already more ordered than lecithin bilayers. A phase transition of pure globoside at 55 degrees C, involving 'melting' of the hc chains was also detected using X-ray and esr spectroscopic techniques. The interbilayer spacing, dw, of equimolar lecithin-globoside lamellar phase increased by 42% from that of lecithin bilayers, indicating that the glycolipid p group may increase the net repulsive force between bilayers, as was previously predicted theoretically.  相似文献   

5.
Salmonella minnesota Re and Ra lipopolysaccharides (LPSs) and Escherichia coli K-12 LPS formed three-dimensional crystals, either hexagonal plates (preferential growth along the a axis) or solid columns (preferential growth along the c axis), when they were precipitated by the addition of 2 volumes of 95% ethanol containing 375 mM MgCl2 and incubated in 70% ethanol containing 250 mM MgCl2 at 4 degrees C for 10 days. Analyses of crystals suggested that they consist of hexagonal lattices with the a axis (a side of the lozenge as a unit cell on the basal plane) of 0.462 nm for all these three kinds of LPSs and the c axes (perpendicular to the basal plane) of 5.85, 8.47, and 8.75 nm for S. minnesota Re and Ra LPSs and E. coli K-12 LPS, respectively, and that hydrocarbon chains of the lipid A portion play the leading part in crystallization, whereas the hydrophilic part of the lipid A (the disaccharide backbone) and R core exhibit a disordered structure or are in a random orientation. The phenomenon of doubling of the a axis to 0.924 nm was observed with crystals of S. minnesota Re LPS when they were incubated in 70% ethanol for an additional 180 days, but not with crystals of S. minnesota Ra LPS or E. coli K-12 LPS. S. minnesota S-form LPS possessing the O-antigen-specific polysaccharide and S. minnesota free lipid A obtained by acid hydrolysis of Re LPS did not crystallize under the same experimental conditions.  相似文献   

6.
Various anions and cations are found to induce changes in the layered structure of phosphatidylcholine-water systems as indicated by Raman Spectroscopy. From the ratio of Raman intensities, I1064/I1089, it is inferred that dipositive ions decrease the proportion of gauche character in the hydrocarbon chains, with the relative influence being: Ba2+ less than Mg2+ less than Ca2+ similar to Cd2+. Unipositive ions (Li+, K+ and Na+) produce no observed changes in the Raman spectrum of the lecithin dispersion. The proportion of gauche character of the hydrocarbon chains is found to be nearly independent of the anion for: Br-, Cl-, acetate-, I-, ClO4-, CNS- and SO42-. Dispersions prepared with a solution of KI+I2 produced Raman spectra in which the 1089cm-1 peak, which is characteristic of random lipid chains, was greatly intensified, presumably because of the presence of I3- which is known to penetrate the lipid lamellae. The observed trends are discussed.  相似文献   

7.
F J?hnig  K Harlos  H Vogel  H Eibl 《Biochemistry》1979,18(8):1459-1468
The changes in bilayer structure induced by surface charges in the case of an ionizable lipid were studied by X-ray diffraction, Raman spectroscopy, and film-balance measurements. With increasing surface charge in the ordered phase, the X-ray results show a decrease in bilayer thickness, whereas the hydrocarbon chain packing stays essentially constant, the Raman data signify that the internal chain ordering does not change, and the monolayer studies show a lateral expansion of the bilayer. These results are interpreted in terms of a tilt of the chains caused by the surface charges on the polar heads. The tilt angle between the direction of the chains and the bilayer normal is obtained by a detailed theoretical evaluation. The tilt allows for a better understanding of the electrostatically induced shift of the phase transition temperature and of the shift induced by the binding of water in the case of lecithin in contrast ethanolamine.  相似文献   

8.
Differential scanning calorimetry and x-ray diffraction techniques have been used to investigate the structure and phase behavior of hydrated dimyristoyl lecithin (DML) in the hydration range 7.5 to 60 weight % water and the temperature range -10 to +60 degrees C. Four different calorimetric transitions have been observed: T1, a low enthalpy transition (deltaH approximately equal to 1 kcal/mol of DML) at 0 degrees C between lamellar phases (L leads to Lbeta); T2, the low enthalpy "pretransition" at water contents greater than 20 weight % corresponding to the transition Lbeta leads to Pbeta; T3, the hydrocarbon chain order-disorder transition (deltaH = 6 to 7 kcal/mol of DML) representing the transition of the more ordered low temperature phases (Lbeta, Pbeta, or crystal C, depending on the water content) to the lamellar Lalpha phase; T4, a transition occurring at 25--27 degrees C at low water contents representing the transition from the lamellar Lbeta phase to a hydrated crystalline phase C. The structures of the Lbeta, Pbeta, C, and Lalpha phases have been examined as a function of temperature and water content. The Lbeta structure has a lamellar bilayer organization with the hydrocarbon chains fully extended and tilted with respect to the normal to the bilayer plane, but packed in a distorted quasihexagonal lattice. The Pbeta structure consists of lipid bilayer lamellae distorted by a periodic "ripple" in the plane of the lamellae; the hydrocarbon chains are tilted but appear to be packed in a regular hexagonal lattice. The diffraction pattern from the crystalline phase C indexes according to an orthorhombic cell with a = 53.8 A, b = 9.33 A, c = 8.82 A. In the lamellae bilayer Lalpha strucure, the hydrocarbon chains adopt a liquid-like conformation. Analysis of the hydration characteristics and bilayer parameters (lipid thickness, surface area/molecule) of synthetic lecithins permits an evaluation of the generalized hydration and structural behavior of this class of lipids.  相似文献   

9.
The phase structure of isolated bacterial lipid A, the lipid anchor of the lipopolysaccharides of the outer membrane of Gram-negative bacteria, has been investigated by neutron small-angle scattering. The shape of the scattering curves obtained at different H2O/2H2O ratios revealed a lamellar organisation of the lipid A at neutral pH both above and below its main phase temperature (approximately 40-45 degrees C). Analysis of the scattering curves and interpretation of the corresponding thickness distance distribution functions of the lamellar aggregates led to a model in which the lipid A molecules form a bilayer of about 5 nm in thickness. This value for the thickness of the bilayer, as well as the neutron-scattering density profile across the bilayer, can be explained by a molecular model which shows interdigitation of the fatty acid chains of the lipid A.  相似文献   

10.
Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This is attributed to the presence of unsaturated acyl chains in egg lecithin.  相似文献   

11.
The polypeptide gramicidin A in a dimeric form is considered to form a helical structure which spans the hydrocarbon region of lipid bilayers. In the present investigation it is used as a model for the interactions of the polypeptide segments of transmembrane proteins within the hydrocarbon region of the lipid bilayers of biomembrane structures. A variety of physical techniques (X-ray diffraction, differential scanning calorimetry, optical and electron microscopy, Raman and electron spin resonance spectroscopy) are applied to a study of the interactions of this polypeptide within the phospholipid bilayers of dimyristoyl and dipalmitoyl lecithins in water, at temperatures both above and below the main endothermic phase transition of the pure lipids.Above the transition temperature of the lipid, the Raman studies show that the polypeptide perturbs the fluid lipid environment and causes a marked decrease in the number of gauche isomers of the lipid hydrocarbon chains, even at quite low relative molar concentrations of the polypeptide to lipid (1:150). At concentrations of phospholipid to polypeptide of less than 5:1, the electron spin resonance studies show the existence of two lipid regions within the bilayer. One region corresponds to the relatively fluid lipid region normally observed at these temperatures and the other to a relatively rigid lipid region. The latter is considered to arise from clusters of the polypeptide in which some of the lipid is entrapped.Below the lipid phase transition temperature, the pretransition endotherm observed with pure lipid-water systems is removed by small molar concentrations of the polypeptide (1:50) and the rippled appearance observed in freeze-fracture electron micrographs with pure dimyristoyl lecithin-water dispersions is replaced by a smooth appearance.The main lipid phase transition becomes broadened by the presence of increasing amounts of the polypeptide within the lipid bilayer as indicated by calorimetry, and electron spin resonance spectroscopy. The enthalpy of the lipid transition decreases linearly with increasing amounts of the polypeptide until, with dipalmitoyl lecithin, a concentration of approximately 20 lipids per polypeptide is reached. This is considered to correspond to the onset of an aggregation process which produces localised polypeptide-lipid clusters within the plane of the membrane.At concentrations of polypeptide less than five lipids per polypeptide, freezefracture electron microscopy shows the presence of liposomes with smooth fracture faces. At higher polypeptide concentrations, sheet-like structures are observed with smooth fracture faces.When a mixed lipid-water system (dilauroyl and dipalmitoyl lecithin) containing low concentrations of the polypeptide is slowly cooled, the calorimetric evidence shows that the polypeptide moves preferentially into the lower melting region of the bilayer, whereas at higher polypcptide eoncentrations a mixing of the two lipids takes place.The various results are discussed to provide insight pertinent to the organisation, interactions, aggregation properties, boundary layer and packing arrangements of helical polypeptides and proteins in reconstituted systems and natural biomembranes.  相似文献   

12.
Single bilayer vesicles of dimyristoylphosphatidylcholine have been investigated by small-angle X-ray scattering at 28 degrees C. The results indicate that these vesicles are hollow spherical shell structures with an outer radius of approximately 12 nm and a molecular weight of (3.2 +/- 0.5) X 10(6). The shell was found to be 4.4 +/- 0.2 nm thick with a cross-sectional electron-density profile characteristic for a single phospholipid bilayer. Upon interaction of these vesicles with apolipoprotein C-III from human very low density lipoproteins at a protein/lipid ratio greater than 0.08 (g/g), a complex containing 0.25 g of protein/g of lipid, with molecular weight of (3.9 +/- 0.4) X 10(5), is formed. The shape analysis indicates a highly asymmetric particle with an internal partition of low and high electron density resembling that produced by a bilayer structure. Model calculations and curve-fitting procedures show good agreement between the experimental scattering curve and that computed for an oblate ellipsoidal structure with dimensions of 17 X 17 X 5 nm and a 1 nm thick shell of high electron density surrounding the core of low electron density.  相似文献   

13.
Summary The lateral mobility of pyrene, pyrene decanoic acid, and 1-palmitoyl-2-pyrene decanoyl-phosphatidyl choline (pyrene lecithin) in lipid bilayers is determined by the excimer formation technique. This method is applied to vesicles of lecithins differing in chain length and in the degree of saturation of the hydrocarbon chains. These values are compared with results in cephalins of different chain length and in dipalmitoyl phosphatidic acid at variable pH. The influence of cholesterol is investigated. The results are analyzed in terms of the Montroll model of two-dimensional random walk. The jump frequency of the probe molecule within the lipid lattice is obtained. The advantage of this measure of transport in lipid layers is that it does not involve lipid lattice parameters.The main results of the present work are: (i) The lateral mobility of a given solute molecule in lamellae of saturated lecithins is independent of hydrocarbon chain length and rather a universal function of temperature. (ii) In unsaturated dioleyl lecithin the amphiphatic molecules have lateral mobilities of the same size as in saturated lipids. The jump frequency of pyrene, however, is by a factor of two larger in the unsaturated lecithin. (iii) The jump frequencies in phosphatidyl ethanolamines are about equal to those in lecithins. (iv) In phosphatidic acid layers the hopping frequencies depend on the chargers of the head groups of both the lipids and the probes. (v) Cholesterol strongly reduces the jump frequency in fluid layers. (vi) The lateral mobility in biological membranes is comparable to that in artificial lipid bilayers.The experimental results are discussed in terms of the free volume model of diffusion in fluids. Good agreement with the predictions made from this model is found. A striking result is the observation of a tilt in dioleyl-lecithin bilayer membranes from the hopping frequencies of pyrene and pyrene lecithin. A tilt angle of -17° is estimated.  相似文献   

14.
Polarized Fourier transform infrared (FTIR)-attenuated total reflection (ATR) spectroscopy was applied to study the orientation of the linear pentadecapeptide antibiotic gramicidin D incorporated into phospholipid multibilayers, which were cast on a germanium ATR plate from chloroform solution. In DMPC and DPPC multibilayers, the CH2 stretching bands of lipid hydrocarbon chains were slightly shifted to the higher frequency side and bandwidth was increased in the presence of gramicidin. However, in DPPE multibilayers, frequencies and bandwidths of these bands were unaltered. In each case, gramicidin produced little effect on the orientation of lipid hydrocarbon chains, suggesting that gramicidin penetrates into lipid layers without noticeable perturbations. Upon incubation of cast films in contact with water above the gel-liquid-crystalline transition temperature (Tc) of lipids, the reorientation of gramicidin in lipid multibilayers occurred, the degree thereof depending upon the fluidity of the lipid hydrocarbon chains and the amount of surrounding water. In DMPC multibilayers, the helix axis of gramicidin was oriented almost parallel to the lipid hydrocarbon chains after incubation. In DPPC multibilayers, on the other hand, the helix axis of gramicidin was tilted on average about 15 degrees from the lipid hydrocarbon chains after incubation. However, in DPPE multibilayers, which are known to have the most rigid bilayer structures, the reorientation of gramicidin could not be seen.  相似文献   

15.
The activity of m-calpain, a heterodimeric, Ca2+-dependent cysteine protease appears to be modulated by membrane interactions involving oblique-orientated alpha-helix formation by a segment, GTAMRILGGVI, in the protein's smaller subunit. Here, graphical and hydrophobic moment-based analyses predicted that this segment may form an alpha-helix with strong structural resemblance to the influenza virus peptide, HA2, a known oblique-orientated alpha-helix former. Fourier transform infrared spectroscopy showed that a peptide homologue of the GTAMRILGGVI segment, VP1, adopted low levels of alpha-helical structure ( approximately 20%) in the presence of zwitterionic lipid and induced a minor decrease (3 degrees C) in the gel to liquid-crystalline phase transition temperature, TC, of the hydrocarbon chains of zwitterionic membranes, suggesting interaction with the lipid headgroup region. In contrast, VP1 adopted high levels of alpha-helical structure (65%) in the presence of anionic lipid, induced a large increase (10 degrees C) in the TC of anionic membranes, and showed high levels of anionic lipid monolayer penetration (DeltaSP = 5.5 mN.m-1), suggesting deep levels of membrane penetration. VP1 showed strong haemolytic ability (LD50 = 1.45 mm), but in the presence of ionic agents, this ability, and that of VP1 to penetrate anionic lipid monolayers, was greatly reduced. In combination, our results suggest that m-calpain domain V may penetrate membranes via the adoption of an oblique-orientated alpha-helix and electrostatic interactions. We speculate that these interactions may involve snorkelling by an arginine residue located in the polar face of this alpha-helix.  相似文献   

16.
Interaction between organophosphorous insecticide GA-41 and liposomes formed from lecithin and multilamellar dispersion from lecithin and cardiolipin mixture (molar ratio is 7:3) has been studied by 1H- and 31P-NMR spectroscopy. The results obtained showed that while interacting with model membranes the GA-41 molecules intercalate into the range of hydrocarbon chains of phospholipids. At certain concentration of GA-41 its molecules induce the formation of some defects on bilayer structure, leading to permeability for Pr3+ ions.  相似文献   

17.
The ternary phase diagram of cholesteryl linolenate-egg lecithin-water has been determined by polarizing light microscopy, calorimetry and X-ray diffraction at 23 °C. Hydrated lecithin forms a lamellar liquid-crystalline structure into which small amounts of cholesteryl linolenate are incorporated. The maximum incorporation of cholesterol ester into this lamellar structure varies with the degree of hydration. Increasing the water concentration from 10 to 15% (w/w) increased the limiting molar ratio of cholesteryl linolenate to lecithin in the lamellar phase from 1:50 to 1:22. At intermediate concentrations (15 to 30% water) the cholesteryl linolenate:lecithin ratio remains constant at 1:22. When water is increased to 42.5%, the maximum water content in the lamellar phase, the molar ratio decreased to 1:32. At low water concentrations the cholesterol ester appears to be entirely in the apolar region of the lecithin bilayer, while at higher water concentrations the ester groups of cholesteryl linolenate may be located at the lipid-water interface. At high water concentrations the ester appears to disorder the alkyl chains of the lecithin, giving rise to a thinner lipid layer and an increased surface area per lipid molecule when compared to the lecithin-water system in the absence of cholesteryl linolenate.The lamellar phase is the only phase (except at water concentrations less than 5%) in which all three components mutually interact. All mixtures of the three components having compositions outside the one-phase (lamellar) zone produce additional phases of cholesteryl linolenate or water, or both. Between 23 °C and 60 °C only minor changes in the phase diagram are observed.  相似文献   

18.
Raman spectra are presented for egg lecithin above and below the gelliquid crystal phase transition, and several regions of the Raman spectrum are shown to be sensitive to conformational changes in the hydrocarbon chains. These regions are used to investigate the effect of sonication on the structure of egg lecithin and dipalmitoyl lecithin vesicles. Sonication of both egg lecithin above Tm, and dipalmitoyl lecithin above and below Tm produces no change in the relative population of trans and gauche isomers in any of the systems studied. Sonication does however appear to effect interchain interactions, a possible consequence of imperfect packing towards the center of the bilayers in vesicle systems.  相似文献   

19.
Neutron diffraction methods provide information about the distribution of matter in biological and model membrane systems. The information is derived from plots (profiles) of scattering length density along an axis normal to the membrane plane. Without the use of specific deuteration, the generally low resolution of the profiles limits their interpretation in terms of specific chemical constituents (e.g., lipid headgroup, lipid hydrocarbon, protein, and water). A fundamental and useful structural assignment to make is the boundary between the headgroup and hydrocarbon regions of bilayers. We demonstrate here that strip-function model representations of neutron scattering length density profiles of bilayers are sufficient to determine accurately the position of the headgroup-hydrocarbon boundary. The resulting hydrocarbon thickness of the bilayer is useful for determining the area per lipid molecule and consequently the molecular packing arrangements of the membrane constituents. We analyze data obtained from dioleoylphosphatidylcholine (DOPC) bilayers at 66% RH using standard Fourier profile analyses and from DOPC deuterated specifically at the C-2 carbon of the acyl chains using difference Fourier analysis. We demonstrate that strip-function models accurately define the positions of the C-2 carbons and thus the hydrocarbon thickness (dhc) of the bilayer. We then show, using quasi-molecular models, that the strip-model analysis probably provides an accurate measure of dhc because of the exceptionally high scattering length density difference between the carbonyl and methylene groups.  相似文献   

20.
Several spin-labelled phospholipids carrying covalently bound 5-doxylstearic acid (2-(3-carboxydecyl)-2-hexyl-4,4-dimethyl-3-oxazolidinoxyl) were intercalated in liposomes of saturated and unsaturated lecithins. Temperature-induced changes of these liposomes, detected by the spin-labelled phospholipids, were found to be in agreement with the previously described transitions of hydrocarbon chains of host lecithins detected by different probes and different techniques, establishing that spin-labelled phosopholipids are sensitive probes for the detection of temperature-induced changes in lecithin model membranes. In addition to the detection of already-known transitions in lecithin liposomes, the coexistence of two distinctly different enviroments was observed above the characteristic transition temperature. This phenomenon was tentatively attributed to the influence of the lecithin polar group on the fluidity of fatty acyl chains near the polar group. Combined with other results from the literature, the coexistence of two environments could be associated with the coexistence of two conformational isomers of lecithin, differing in the orientation of the polar head group with respect to the plane of bilayer. These findings have been discussed in view of the present state of knowledge regarding temperature-induced changes in model membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号