首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Sea ice cores were obtained from eleven fast ice stations and one floe in the Weddell Sea, Antarctica in January–February 1985. All cores from the north eastern part of the Weddell Sea contained numerous living and dead planktic foraminifers of the species Neogloboquadrina pachyderma (Ehrenberg), while cores drilled in southern parts were barren of foraminifers with one exception. Foraminiferal abundances were variable, with numbers up to 320 individuals per liter melted sea ice. Distribution of foraminifers appears to be patchy, parallel cores taken less than 30 cm apart contained numbers which varied considerably. On the other hand, three cores taken on a transect each more than 3 km apart showed striking similarities. In general, small dead tests were found in the upper parts of the sea ice cores while large living individuals mainly occurred in lower sections. Abundant diatoms probably serve as a food source for the foraminifers. Correlation of foraminiferal abundance with salinity, chlorophyll and nutrient profiles are inconsistent. The possible mechanism of incorporation of N. pachyderma into the ice is discussed.  相似文献   

2.
Allison  Nicola  Cole  Catherine  Hintz  Chris  Hintz  Ken  Rae  James  Finch  Adrian 《Coral reefs (Online)》2021,40(6):1807-1818
Coral Reefs - Ocean acidification typically reduces the calcification rates of massive Porites spp. corals, but increasing seawater temperatures (below the stress and bleaching threshold) can...  相似文献   

3.
Oceans are predicted to become more acidic and experience more temperature variability—both hot and cold—as climate changes. Ocean acidification negatively impacts reef-building corals, especially when interacting with other stressors such as elevated temperature. However, the effects of combined acidification and low temperature stress have yet to be assessed. Here, we exposed nubbins of the scleractinian coral Montipora digitata to ecologically relevant acidic, cold, or combined stress for 2 weeks. Coral nubbins exhibited 100% survival in isolated acidic and cold treatments, but ~30% mortality under combined conditions. These results provide further evidence that coupled stressors have an interactive effect on coral physiology, and reveal that corals in colder environments are also susceptible to the deleterious impacts of coupled ocean acidification and thermal stress.  相似文献   

4.
The effects of elevated partial pressure of CO2 ( p CO2) and temperature, alone and in combination, on survival, calcification and dissolution were investigated in the crustose coralline alga Lithophyllum cabiochae . Algae were maintained in aquaria during 1 year at near-ambient conditions of irradiance, at ambient or elevated temperature (+3 °C) and at ambient [ca. 400 parts per million (ppm)] or elevated p CO2 (ca. 700 ppm). Algal necroses appeared at the end of summer under elevated temperature first at 700 ppm (60% of the thallus surface) and then at 400 ppm (30%). The death of algae was observed only under elevated temperature and was two- to threefold higher under elevated p CO2. During the first month of the experiment, net calcification was significantly reduced under elevated p CO2. At the end of the summer period, net calcification decreased by 50% when both temperature and p CO2 were elevated while no effect was found under elevated temperature and elevated p CO2 alone. In autumn and winter, net calcification in healthy algae increased with increasing temperature, independently of the p CO2 level, while necroses and death in the algal population caused a net dissolution at elevated temperature and p CO2. The dissolution of dead algal thalli was affected by elevated p CO2, being two- to fourfold higher than under ambient p CO2. These results suggest that net dissolution is likely to exceed net calcification in L. cabiochae by the end of this century. This could have major consequences in terms of biodiversity and biogeochemistry in coralligenous communities dominated by these algae.  相似文献   

5.
Microsensor measurements of CO2, O2, pH and Ca2+ in the vicinity of the symbiont-bearing planktonic foraminifer Orbulina universa showed major light-modulated changes in the chemical microenvironment due to symbiont photosynthesis, respiration of the holobiont, and precipitation of the calcite shell. Under saturating light conditions, microprofiles measured towards the shell surface showed an O2 increase of up to 220% air saturation, a decrease in CO2 concentration to 4.9 μM, and a pH increase to 8.8 due to symbiont photosynthesis. The Ca2+ concentration decreased to ∼9.6 mM in two specimens, while it increased to 10.2-10.8 mM in three other specimens kept in light. In darkness, the respiration of the community decreased the O2 concentration to 82% of air saturation, CO2 increased up to 15 μM, the pH decreased to 8.0, and the Ca2+ concentration increased up to 10.4 mM. These data, and derived calculations of the distribution of HCO3- and CO32- near the shell, showed that the carbonate system in the vicinity of O. universa was significantly different from conditions in the surrounding seawater, both in light and darkness, due to the metabolism of the foraminifer and its associated algae. Experimental light-dark cycles indicated a sufficient CO2 supply sustaining high carbon fixation rates of the symbiotic algae via conversion of HCO3- or via CO2 release from calcification and host respiration. Our findings on irradiance-dependent CO2 and pH changes in the vicinity of symbiont-bearing planktonic foraminifera give direct experimental evidence for the predictions of isotope fractionation models used in palaeoclimatology stating that metabolic processes affect the isotopic carbon signal (δ13C) in foraminifera.  相似文献   

6.
7.
This study investigated the synergistic effects of ocean acidification (caused by elevations in the partial pressure of carbon dioxide pCO2) and temperature on the fertilization and embryonic development of the economically and ecologically important Sydney rock oyster, Saccostrea glomerata (Gould 1850). As pCO2 increased, fertilization significantly decreased. The temperature of 26 °C was the optimum temperature for fertilization, as temperature increased and decreased from this optimum, fertilization decreased. There was also an effect of pCO2 and temperature on embryonic development. Generally as pCO2 increased, the percentage and size of D‐veligers decreased and the percentage of D‐veligers that were abnormal increased. The optimum temperature was 26 °C and embryonic development decreased at temperatures that were above and below this temperature. Abnormality of D‐veligers was greatest at 1000 ppm and 18 and 30 °C (≥90%) and least at 375 ppm and 26 °C (≤4%). Finally prolonged exposure of elevated pCO2 and temperature across early developmental stages led to fewer D‐veligers, more abnormality and smaller sizes in elevated CO2 environments and may lead to lethal effects at suboptimal temperatures. Embryos that were exposed to the pCO2 and temperature treatments for fertilization and embryonic development had fewer D‐veligers, greater percentage of abnormality and reduced size than embryos that were exposed to the treatments for embryonic development only. Further at the elevated temperature of 30 °C and 750–1000 ppm, there was no embryonic development. The results of this study suggest that predicted changes in ocean acidification and temperature over the next century may have severe implications for the distribution and abundance of S. glomerata as well as possible implications for the reproduction and development of other marine invertebrates.  相似文献   

8.
We present SSU rDNA data resolving the seasonal and geographical distribution of 'cryptic' genetic types of the planktonic foraminifer morphospecies Globigerinoides ruber in the eastern Atlantic Ocean and the Mediterranean Sea. Analysis of 262 sequences revealed the presence of five genetic types belonging to two distinct lineages. Although the morphospecies G. ruber occurs throughout the investigated region, its constituent 'cryptic' genetic types show a pattern of widespread exclusion, which is difficult to reconcile with the concept of ubiquitous dispersal. One of the newly discovered genetic types was exclusively found at stations in the Mediterranean Sea, possibly representing the smallest-scale example of endemism known in planktonic foraminifera. In general, our results suggest that the geographical scale of mutual exclusion between the genotypes is negatively correlated with their phylogenetic relatedness: the most similar and most recently diverged pair of siblings showed the strongest evidence for small-scale competitive exclusion. This pattern is consistent with the concept of niche partitioning, implying decreasing level of competition between genetic types with increasing degree of genetic divergence.  相似文献   

9.
10.
Increased atmospheric CO2 emissions are inducing changes in seawater carbon chemistry, lowering its pH, decreasing carbonate ion availability and reducing calcium carbonate saturation state. This phenomenon, known as ocean acidification, is happening at a faster rate in cold regions, i.e., polar and sub-polar waters. The larval development of Arbacia dufresnei from a sub-Antarctic population was studied at high (8.0), medium (7.7) and low (7.4) pH waters. The results show that the offspring from sub-Antarctic populations of A. dufresnei are susceptible to a development delay at low pH, with no significant increase in abnormal forms. Larvae were isometric between pH treatments. Even at calcium carbonate (CaCO3) saturation states (of both calcite and aragonite, used as proxies of the magnesium calcite) <1, skeleton deposition occurred. Polar and sub-polar sea urchin larvae can show a certain degree of resilience to acidification, also emphasizing A. dufresnei potential to poleward migrate and further colonize southern regions.  相似文献   

11.
Global environmental changes, including ocean acidification, have been identified as a major threat to scleractinian corals. General predictions are that ocean acidification will be detrimental to reef growth and that 40 to more than 80 per cent of present-day reefs will decline during the next 50 years. Cold-water corals (CWCs) are thought to be strongly affected by changes in ocean acidification owing to their distribution in deep and/or cold waters, which naturally exhibit a CaCO(3) saturation state lower than in shallow/warm waters. Calcification was measured in three species of Mediterranean cold-water scleractinian corals (Lophelia pertusa, Madrepora oculata and Desmophyllum dianthus) on-board research vessels and soon after collection. Incubations were performed in ambient sea water. The species M. oculata was additionally incubated in sea water reduced or enriched in CO(2). At ambient conditions, calcification rates ranged between -0.01 and 0.23% d(-1). Calcification rates of M. oculata under variable partial pressure of CO(2) (pCO(2)) were the same for ambient and elevated pCO(2) (404 and 867 μatm) with 0.06 ± 0.06% d(-1), while calcification was 0.12 ± 0.06% d(-1) when pCO(2) was reduced to its pre-industrial level (285 μatm). This suggests that present-day CWC calcification in the Mediterranean Sea has already drastically declined (by 50%) as a consequence of anthropogenic-induced ocean acidification.  相似文献   

12.
The planktonic foraminiferal morpho-species Globoconella inflata is widely used as a stratigraphic and paleoceanographic index. While G. inflata was until now regarded as a single species, we show that it rather constitutes a complex of two pseudo-cryptic species. Our study is based on SSU and ITS rDNA sequence analyses and genotyping of 497 individuals collected at 49 oceanic stations covering the worldwide range of the morpho-species. Phylogenetic analyses unveil the presence of two divergent genotypes. Type I inhabits transitional and subtropical waters of both hemispheres, while Type II is restricted to the Antarctic subpolar waters. The two genetic species exhibit a strictly allopatric distribution on each side of the Antarctic Subpolar Front. On the other hand, sediment data show that G. inflata was restricted to transitional and subtropical environments since the early Pliocene, and expanded its geographic range to southern subpolar waters ~700 kyrs ago, during marine isotopic stage 17. This datum may correspond to a peripatric speciation event that led to the partition of an ancestral genotype into two distinct evolutionary units. Biometric measurements performed on individual G. inflata from plankton tows north and south of the Antarctic Subpolar Front indicate that Types I and II display slight but significant differences in shell morphology. These morphological differences may allow recognition of the G. inflata pseudo-cryptic species back into the fossil record, which in turn may contribute to monitor past movements of the Antarctic Subpolar Front during the middle and late Pleistocene.  相似文献   

13.
Jiang  Lei  Zhang  Fang  Guo  Ming-Lan  Guo  Ya-Juan  Zhang  Yu-Yang  Zhou  Guo-Wei  Cai  Lin  Lian  Jian-Sheng  Qian  Pei-Yuan  Huang  Hui 《Coral reefs (Online)》2018,37(1):71-79

This study tested the interactive effects of increased seawater temperature and CO2 partial pressure (pCO2) on the photochemistry, bleaching, and early growth of the reef coral Pocillopora damicornis. New recruits were maintained at ambient or high temperature (29 or 30.8 °C) and pCO2 (~ 500 and ~ 1100 μatm) in a full-factorial experiment for 3 weeks. Neither a sharp decline in photochemical efficiency (Fv/Fm) nor evident bleaching was observed at high temperature and/or high pCO2. Furthermore, elevated temperature greatly promoted lateral growth and calcification, while polyp budding exhibited temperature-dependent responses to pCO2. High pCO2 depressed calcification by 28% at ambient temperature, but did not impact calcification at 30.8 °C. Interestingly, elevated temperature in concert with high pCO2 significantly retarded the budding process. These results suggest that increased temperature can mitigate the adverse effects of acidification on the calcification of juvenile P. damicornis, but at a substantial cost to asexual budding.

  相似文献   

14.
15.
16.
Coral mechanisms of resilience and resistance to stressors such as increasing sea surface temperature and ocean acidification must first be understood in order to facilitate the survival of coral reefs as we know them. One such mechanism is production of the protective surface mucopolysaccharide layer (SML). In this study, we investigated changes in the thickness of the SML in response to increasing temperature and acidification for the three Caribbean scleractinian coral species of the genus Diploria, which have been shown to exhibit differential resilience to disease and bleaching. Among the three species, Diploria strigosa is known to have a higher susceptibility to disease, Diploria labyrinthiformis is known to bleach more quickly, and Diploria clivosa is relatively unstudied. When temperature was increased from 25 to 31 °C over a 1- or 6-week period, the overall thickness of the SML decreased from 33 to 55 % for all three species. Average SML thickness at 25 °C for all three species ranged from 106 to 156 μm, while average thickness at 31 °C ranged from 64 to 86 μm. SML thickness was significantly different among species at 25 °C, but not at 31 °C. D. labyrinthiformis demonstrated lower fragment mortality due to thermal stress when compared to the other Diploria species. Acidification from pH 8.2 to 7.7 over 5 weeks had no effect on SML thickness for any species. The observed decrease in SML thickness in response to increased temperature might be attributed to a decrease in the production of mucus or an increase in the viscosity of the SML. These findings may help to explain the increased prevalence of coral disease during the warmer months, since increased temperature compromises an important aspect of coral innate immunity, as well as differences in disease and bleaching susceptibilities between Diploria species.  相似文献   

17.
The five mass extinction events that the earth has so far experienced have impacted coral reefs as much or more than any other major ecosystem. Each has left the Earth without living reefs for at least four million years, intervals so great that they are commonly referred to as ‘reef gaps’ (geological intervals where there are no remnants of what might have been living reefs). The causes attributed to each mass extinction are reviewed and summarised. When these causes and the reef gaps that follow them are examined in the light of the biology of extant corals and their Pleistocene history, most can be discarded. Causes are divided into (1) those which are independent of the carbon cycle: direct physical destruction from bolides, ‘nuclear winters’ induced by dust clouds, sea-level changes, loss of area during sea-level regressions, loss of biodiversity, low and high temperatures, salinity, diseases and toxins and extraterrestrial events and (2) those linked to the carbon cycle: acid rain, hydrogen sulphide, oxygen and anoxia, methane, carbon dioxide, changes in ocean chemistry and pH. By process of elimination, primary causes of mass extinctions are linked in various ways to the carbon cycle in general and ocean chemistry in particular with clear association with atmospheric carbon dioxide levels. The prospect of ocean acidification is potentially the most serious of all predicted outcomes of anthropogenic carbon dioxide increase. This study concludes that acidification has the potential to trigger a sixth mass extinction event and to do so independently of anthropogenic extinctions that are currently taking place.  相似文献   

18.
The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean''s microbial food web.  相似文献   

19.
Effects of ocean acidification on learning in coral reef fishes   总被引:2,自引:0,他引:2  
Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO(2) predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO(2) effects, whereby some individuals are unaffected at particular CO(2) concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 μatm CO(2) (current day levels) or 850 μatm CO(2), a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO(2) failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 μatm-CO(2) fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO(2) exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO(2) exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO(2)-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO(2) may alter the cognitive ability of juvenile fish and render learning ineffective.  相似文献   

20.
海洋酸化对马氏珠母贝胚胎和早期幼虫发育的影响   总被引:2,自引:0,他引:2  
研究当前预测2100年海洋将达到的酸化程度对马氏珠母贝(Pinctada martensii)胚胎和早期幼虫发育的影响.人工受精卵置于pH=7.70的CO2酸化海水(酸化组)和pH=8.10的对照海水(对照组)中进行胚胎和幼虫发育试验.结果表明:人工受精8 h后,酸化组和对照组胚胎在各发育时期的数量分布没有明显的差异;24 h后,酸化组16.6%±12.0%发育至D型幼虫,且畸形个体百分比为48.2%±9.1%;而对照组44.8%±7.4%发育至D型幼虫,畸形个体百分比仅为18.6%±11.5%.48 h后,酸化组D型幼虫百分比23.0%±9.6%.畸形个体比例高达63.2%±14.1%;对照组D型幼虫59.4%±13.0%,畸形个体百分比仅为26.6%±14.5%;与对照组相比,酸化组中D型幼虫壳长和壳高明显偏小,而且壳长增长缓慢.试验表明,将来马氏珠母贝这类发生生物钙化的典型热带海洋贝类生物,其幼虫发育将会受到海洋酸化的不利影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号