首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF). Our predictions are within ∼2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors. Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ∼60% of permissive mutations necessary to recover ancestral function.  相似文献   

2.
In this paper we report the synthesis and a detailed NMR solution characterization of a new CCK8 analogue and its indium(III) complex, PK-CCK8 and In-PK-CCK8. The new compounds contain a porphyrin moiety covalently bound through an amide bond to the side chain of a Lys residue introduced at the N-terminus of CCK8. A molecular dynamics simulation, based on the NMR structure of the complex between CCK8 and the N-terminal extracellular arm of the CCK(A) receptor, is also reported. Both the NMR study and the molecular dynamics simulation indicate that the porphyrin-peptide conjugate might be able to bind to the CCK(A) receptor model. The results of the molecular dynamics calculations show that the conformational features of the CCK8/CCK(A) receptor model complex and of the PK-CCK8/CCK(A) receptor-model complex are similar. This evidence supports the view that the introduction of the porphyrin-Lys moiety does not influence the mode of ligand binding to the CCK(A) receptor model. The NMR structure of PK-CCK8 in DMSO consists of a well defined pseudo-helical N-terminal region, while the C-terminal region is flexible. Moreover, the absence of NOE contacts between the porphyrin and the peptide indicates that the macrocyclic ring is directed away from the peptide region involved in the binding with the receptor.  相似文献   

3.
Patny A  Desai PV  Avery MA 《Proteins》2006,65(4):824-842
Angiotensin II type 1 (AT(1)) receptor belongs to the super-family of G-protein-coupled receptors, and antagonists of the AT(1) receptor are effectively used in the treatment of hypertension. To understand the molecular interactions of these antagonists, such as losartan and telmisartan, with the AT(1) receptor, a homology model of the human AT(1) (hAT(1)) receptor with all connecting loops was constructed from the 2.6 A resolution crystal structure (PDB i.d., 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to a stepwise ligand-supported model refinement. This protocol involved initial docking of non-peptide AT(1) antagonists in the putative binding site, followed by several rounds of iterative energy minimizations and molecular dynamics simulations. The final model was validated based on its correlation with several structure-activity relationships and site-directed mutagenesis data. The final model was also found to be in agreement with a previously reported AT(1) antagonist pharmacophore model. Docking studies were performed for a series of non-peptide AT(1) receptor antagonists in the active site of the final hAT(1) receptor model. The docking was able to identify key molecular interactions for all the AT(1) antagonists studied. Reasonable correlation was observed between the interaction energy values and the corresponding binding affinities of these ligands, providing further validation for the model. In addition, an extensive unrestrained molecular dynamics simulation showed that the docking-derived bound pose of telmisartan is energetically stable. Knowledge gained from the present studies can be used in structure-based drug design for developing novel ligands for the AT(1) receptor.  相似文献   

4.
The dopamine D2 receptor (D2R) is the primary target for antipsychotic drugs. Besides schizophrenia, this receptor is linked to dementia, Parkinson’s disease, and depression. Recent studies have shown that β-arrestin biased agonists at this receptor treat schizophrenia with less side effects. Although the high resolution structure of this receptor exists, the mechanism of biased agonism at the receptor is unknown. In this study, dopamine, the endogenous unbiased G-protein agonist, MLS1547, a G-protein biased agonist, and UNC9975, a G-protein antagonist and a β-arrestin biased agonist, were docked to a homology model of the whole D2R including all flexible loops, and molecular dynamics simulations were conducted to study the potential mechanisms of biased agonism. Our thorough analysis on the protein–ligand interaction, secondary structure, tertiary structure, structure dynamics, and molecular switches of all three systems indicates that ligand binding to transmembrane 3 might be essential for G-protein recruitment, while ligand binding to transmembrane 6 might be essential for β-arrestin recruitment. Our analysis also suggests changes in both the secondary and the tertiary structures of TM5 and TM7, molecular switches and ICL3 flexibility are important in biased signaling.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
《FEBS letters》1994,350(2-3):275-280
Human leukaemia inhibitory factor (LIF) is a glycoprotein with a diverse range of activities on many cell types. A molecular model of LIF has been constructed based mainly on the structure of the related cytokine granulocyte colony-stimulating factor, and refined using simulated annealing and molecular dynamics in water. The model was stable during molecular dynamics refinement and is consistent with known stereochemical data on proteins. It has been assessed by comparison with 1H NMR data on the ionization behaviour of the six histidine residues in LIF, the imidazolium pKa values of which range from 3.6 to 7.4. These pKa values were assigned to individual histidine residues from NMR studies on a series of His → Ala mutants. The environments of the histidine residues in the model account very well for their observed ionization behaviour. Furthermore, the model is consistent with mutagenesis studies which have defined a group of amino acid residues involved in receptor binding.  相似文献   

6.
Ligand‐regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug‐drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely “expanded” and “contracted”, in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single “ligand‐adaptable” conformational state. Ensemble‐based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named “α8 pocket”, whose opening‐closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure‐based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a “tightly‐contracted” conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.  相似文献   

7.
The three-dimensional structure of the 5-HT3 receptor is currently unknown. An available structure of the nicotinic acetylcholine receptor closely related by homology to the 5-HT3 receptor was used as a template for the computer-based homology modeling of the 5-HT3 receptor. The study of the ion migration through the channel by the steered molecular dynamics method has shown that the steric factor in the region of residue Thr279 and the region of Glu272, Asp293 influences the ion transmission. The characteristic of the close interaction between the ion and the amino acid substitutions of the 5-HT3 channel was studied by computing the energy profile using constraint force molecular dynamic simulations. The amino acid sequence responsible for selective ion transmission has been investigated. The structure of the channel domain of the serotonin 5-HT3 receptor as a universal functional unit of the ligand-gated ion channels was discussed.  相似文献   

8.
Chromosomes undergo dramatic morphological changes as cells advance through the cell cycle. Using powerful molecular and computational methods, several recent studies revealed an outstanding complexity of continuous structural changes accompanying cell cycle progression. In agreement with cell division being a fundamental cellular process, characteristic features of cell cycle stage‐specific genome structure are conserved from yeast to mouse. These studies further shine light on the critical roles that SMC complexes, already well known as fundamental regulators of chromosome topology, have in orchestrating structural dynamics throughout the cell cycle.  相似文献   

9.
A homology model of the human alpha7 nicotinic receptor was constructed based on the acetylcholine-binding protein crystal structure. Subsequently, the three-dimensional structure of the complex between the alpha7 nicotinic receptor and the 42-amino acid beta-amyloid peptide was obtained for the first time with the aid of the ESCHER program, a well-known method for protein-protein docking. The final complex showed that the most important interactions occur between the residues V12-K28 from the peptide and the loop C of the receptor. The model agrees with many experimental data, and may be used as a base model for further detailed studies in order to gain insight into the binding and dynamics of the complex at molecular level and their correlation with the memory impairments characteristic of the Alzheimer's disease.  相似文献   

10.
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30’s molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π–π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.  相似文献   

11.
12.
PF-4455242 and its analogues represent a new series of kappa opioid selective antagonists that demonstrate high selectivity and potency. We investigated their binding mode to the κ-receptor via docking and molecular dynamics simulations. The ranking of the predicted binding free energies is consistent with experimental results. Detailed binding free energies between antagonists and individual protein residues were calculated, and key residues involved in binding were identified. Deviation of the active site residues was investigated, and the results show that Gln115, Leu135, Tyr139, Trp287 and Tyr313 deviate greatly from the reference structure. Information obtained from molecular modeling studies will aid in the design of potent kappa receptor antagonists.  相似文献   

13.
14.
Human urotensin-II (hU-II) is a cyclic peptide that plays a central role in cardiovascular homeostasis and is considered to be the most potent mammalian vasoconstrictor identified to date. It is a natural ligand of the human urotensin-II (hUT-II) receptor, a member of the family of rhodopsin-like G-protein-coupled receptors. To understand the molecular interactions of hU-II and certain antagonists with the hUT-II receptor, a model of the hUT-II receptor in an active conformation with all its connecting loops was constructed by homology modeling. The initial model was placed in a pre-equilibrated lipid bilayer and re-equilibrated by several procedures of energy minimization and molecular dynamics simulations. Docking studies were performed for hU-II and for a series of nonpeptide hUT-II receptor antagonists in the active site of the modeled receptor structure. Results of the hU-II docking study are in agreement with our previous work and with experimental data showing the contribution of the extracellular loops II and III to ligand recognition. The docking of hU-II nonpeptide antagonists allows identification of key molecular interactions and confirms a previously reported hU-II antagonist pharmacophore model. The results of the present studies will be used in structure-based drug design for developing novel antagonists for the hUT-II receptor.  相似文献   

15.
The present study aimed at determining the functional characteristics of anti-neuroexcitation peptide II (ANEPII). The depressant insect toxin ANEPII from the Chinese scorpion Buthus martensii Karsch had an effect on insect sodium channels. Previous studies showed that scorpion depressant toxins induce insect flaccid paralysis upon binding to receptor site-4, so we tried to predict the functional residues involved using computational techniques. In this study, three-dimensional structure modeling of ANEPII and site-4 of the insect sodium channel were carried out by homology modeling, and these models were used as the starting point for nanosecond-duration molecular dynamics simulations. Docking studies of ANEPII in the sodium channel homology model were conducted, and likely ANEPII binding loci were investigated. Based on these analyses, the residues Tyr34, Trp36, Gly39, Leu40, Trp53, Asn58, Gly61 and Gly62 were predicted to interact with sodium channel receptor and to act as functional residues.  相似文献   

16.
Non-histone chromosomal proteins are an important part of nuclear structure and function due to their ability to interact with DNA to form and modulate chromatin structure and regulate gene expression. However, the understanding of the function of chromosomal proteins at the molecular level has been hampered by the lack of structures of chromosomal protein–DNA complexes. We have carried out a molecular dynamics modeling study to provide insight into the mode of DNA binding to the chromosomal HMG-domain protein, HMG-D. Three models of a complex of HMG-D bound to DNA were derived through docking the protein to two different DNA fragments of known structure. Molecular dynamics simulations of the complexes provided data indicating the most favorable model. This model was further refined by molecular dynamics simulation and extensively analyzed. The structure of the corresponding HMG-D-DNA complex exhibits many features seen in the NMR structures of the sequence-specific HMG-domain-DNA complexes, lymphoid enhancer factor 1 (LEF-1) and testis determining factor (SRY). The model reveals differences from these known structures that suggest how chromosomal proteins bind to many different DNA sequences with comparable affinity. Proteins 30:113–135, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
CC chemokine receptor type-2 (CCR2) is a member of G-protein coupled receptors superfamily, expressed on the cell surface of monocytes and macrophages. It binds to the monocyte chemoattractant protein-1, a CC chemokine, produced at the sites of inflammation and infection. A homology model of human CCR2 receptor based on the recently available C-X-C chemokine recepor-4 crystal structure has been reported. Ligand information was used as an essential element in the homology modeling process. Six known CCR2 antagonists were docked into the model using simple and induced fit docking procedure. Docked complexes were then subjected to visual inspection to check their suitability to explain the experimental data obtained from site directed mutagenesis and structure-activity relationship studies. The homology model was refined, validated, and assessed for its performance in docking-based virtual screening on a set of CCR2 antagonists and decoys. The docked complexes of CCR2 with the known antagonists, TAK779, a dual CCR2/CCR5 antagonist, and Teijin-comp1, a CCR2 specific antagonist were subjected to molecular dynamics (MD) simulations, which further validated the binding modes of these antagonists. B-factor analysis of 20?ns MD simulations demonstrated that Cys190 is helpful in providing structural rigidity to the extracellular loop (EL2). Residues important for CCR2 antagonism were recognized using free energy decomposition studies. The acidic residue Glu291 from TM7, a conserved residue in chemokine receptors, is favorable for the binding of Teijin-comp1 with CCR2 by ΔG of ?11.4?kcal/mol. Its contribution arises more from the side chains than the backbone atoms. In addition, Tyr193 from EL2 contributes ?0.9?kcal/mol towards the binding of the CCR2 specific antagonist with the receptor. Here, the homology modeling and subsequent molecular modeling studies proved successful in probing the structure of human CCR2 chemokine receptor for the structure-based virtual screening and predicting the binding modes of CCR2 antagonists.  相似文献   

18.
The crystal structure of sensory rhodopsin II from Natronobacterium pharaonis was recently solved at 2.1 A resolution from lipidic cubic phase-grown crystals. A critical analysis of previous structure-function studies is possible within the framework of the high-resolution structure of this photoreceptor. Based on the structure, a molecular understanding emerges of the efficiency and selectivity of the photoisomerization reaction, of the interaction of the sensory receptor and its cognate transducer protein HtrII, and of the mechanism of spectral tuning in photoreceptors. The architecture of the retinal binding pocket is compact, representing a major determinant for the selective binding of the chromophore, all-trans retinal to the apoprotein, opsin. Several chromophore-protein interactions revealed by the structure were not predicted by previous mutagenesis and spectroscopic analyses. The structure suggests likely mechanisms by which photoisomerization triggers the activation of sensory rhodopsin II, and highlights the possibility of a unified mechanism of signaling mediated by sensory receptors, including visual rhodopsins. Future investigations using time-resolved crystallography, structural dynamics, and computational studies will provide the basis to unveil the molecular mechanisms of sensory receptors-mediated transmembrane signaling.  相似文献   

19.
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different snapshots.  相似文献   

20.
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process and provide a new insight into the gating mechanism of nAChR at the atomic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号