首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.  相似文献   

2.
Protein size separation based on sodium dodecyl sulfate-gel electrophoresis (SDS-GE) requires denaturing, but we propose that denaturing is unnecessary for analysis by microchip electrophoresis (micro-CE). By omitting the protein denaturing process, we achieved not only shortened total analysis time, but also dramatically improved sensitivity without compromising size determination. The detection limit was improved to 0.1 ng/microL under conditions without denaturing and 600 pg (9.0 femtomol) of bovine serum albumin was detectable, which equals levels detectable by Silver stain, although a routine method by microchips in the Coomassie Blue detection level.  相似文献   

3.
4.
The self-interaction of proteins is of paramount importance in aggregation and crystallization phenomena. Solution conditions leading to a change in the state of aggregation of a protein, whether amorphous or crystalline, have mainly been discovered by the use of trial and error screening of large numbers of solutions. Self-interaction chromatography has the potential to provide a quantitative method for determination of protein self-interactions amenable to high-throughput screening. This paper describes the construction and characterization of a microchip separation system for low-pressure self-interaction chromatography using lysozyme as a model protein. The retention time was analyzed as a function of mobile-phase composition, amount of protein injected, flow rate, and stationary-phase modification. The capacity factors (k') as a function of crystallizing agent concentration are compared with previously published values for the osmotic second virial coefficient (B(22)) obtained by static light scattering, showing the ability of the chip to accurately determine protein-protein interactions. A 500-fold reduction in protein consumption and the possibility of using conventional instrumentation and automation are some of the advantages over currently used methodologies for evaluating protein-protein interactions.  相似文献   

5.
We previously proposed microchip-based phosphate-affinity electrophoresis (μPAE) and demonstrated its application to activity measurement of a tyrosine kinase, c-Src. In this study, we extended the μPAE application to a serine/threonine kinase, protein kinase A (PKA), and to a tyrosine phosphatase, leukocyte antigen-related protein tyrosine phosphatase (LAR PTPase). For standard peptide samples, we obtained linear calibration plots, and the limits of detection were 1.2% (PKA) and 1.5% (LAR PTPase) product peptides in the total peptides. The μPAE was also proven to be effective for unpurified enzyme reaction products.  相似文献   

6.

Introduction

Preterm birth (PTB) may be preceded by changes in the vaginal microflora and metabolite profiles.

Objectives

We sought to characterise the metabolite profile of cervicovaginal fluid (CVF) of pregnant women by 1H NMR spectroscopy, and assess their predictive value for PTB.

Methods

A pair of high-vaginal swabs was obtained from pregnant women with no evidence of clinical infection and grouped as follows: asymptomatic low risk (ALR) women with no previous history of PTB, assessed at 20–22 gestational weeks, g.w., n = 83; asymptomatic high risk (AHR) women with a previous history of PTB, assessed at both 20–22 g.w., n = 71, and 26–28 g.w., n = 58; and women presenting with symptoms of preterm labor (PTL) (SYM), assessed at 24–36 g.w., n = 65. Vaginal secretions were dissolved in phosphate buffered saline and scanned with a 9.4 T NMR spectrometer.

Results

Six metabolites (lactate, alanine, acetate, glutamine/glutamate, succinate and glucose) were analysed. In all study cohorts vaginal pH correlated with lactate integral (r = ?0.62, p < 0.0001). Lactate integrals were higher in the term ALR compared to the AHR (20–22 g.w.) women (p = 0.003). Acetate integrals were higher in the preterm versus term women for the AHR (20–22 g.w.) (p = 0.048) and SYM (p = 0.003) groups; and was predictive of PTB < 37 g.w. (AUC 0.78; 95 % CI 0.61–0.95), and delivery within 2 weeks of the index assessment (AUC 0.84; 95 % CI 0.64–1) in the SYM women, whilst other metabolites were not.

Conclusion

High CVF acetate integral of women with symptoms of PTL appears predictive of preterm delivery, as well as delivery within 2 weeks of presentation.
  相似文献   

7.
We compared protein profiles of the synovial fluid of patients with rheumatoid arthritis and osteoarthritis by using surface-enhanced laser desorption/ionization mass spectrometry technology. With this approach, we identified a protein expressed specifically in the synovial fluid of the patients with rheumatoid arthritis. During the investigation, we found several reproducible and discriminatory biomarker candidates for distinction between rheumatoid arthritis and osteoarthritis. Among these candidates, a 10 850 Da protein peak was the clearest example of a single signal found specifically in the rheumatoid arthritis samples. This candidate was purified using a size-exclusion spin column followed by gel electrophoresis and subsequently identified by peptide mapping and post-source decay (PSD) analysis. The results clearly indicate that the protein is myeloid-related protein 8, which was verified by the enzyme immunoassay. It is known that the myeloid-related protein 8 level in serum and synovial fluid is related to disease activity in juvenile rheumatoid arthritis. The results suggest that the ProteinChip platform is useful to detect and identify protein biomarkers expressed specifically in diseases or in some stage of diseases.  相似文献   

8.
A microchip electrophoresis (MCE) method with chemiluminescence (CL) detection was developed for the determination of carnosine-related peptides, including carnosine, homocarnosine, and anserine, in biological samples. A simple integrated MCE-CL system was built to perform the assays. The highly sensitive CL detection was achieved by means of the CL reaction between hydrogen peroxide and N-(4-aminobutyl)-N-ethylisoluminol-tagged peptides in the presence of adenine as a CL enhancer and Co2+ as a catalyst. Experimental conditions for analyte labeling, MCE separation, and CL detection were studied. MCE separation of the above-mentioned three peptides took less than 120 s. Detection limits (signal/noise ratio [S/N] = 3) of 3.0 × 10−8, 2.8 × 10−8, and 3.4 × 10−8 M were obtained for carnosine, anserine, and homocarnosine, respectively. The current MCE-CL method was applied for the determination of carnosine, anserine, and homocarnosine in human cerebrospinal fluid (CSF) and canine plasma. Homocarnosine was detected at the micromolar (μM) level in the CSF samples analyzed, whereas the levels of carnosine and anserine in these samples were below the detection limit of the assay. Interestingly, both carnosine and anserine were detected in the canine plasma samples, whereas homocarnosine was not.  相似文献   

9.
Human papillomavirus (HPV) infections play an important role in the development of cervical neoplasia. To get to a better understanding of the role of cytokines in the development of these neoplasias, we analysed the presence of various cytokines in cervicovaginal washings of healthy volunteers (n=22), cervical intraepithelial neoplasia (CIN) patients (n=63) and cervical cancer patients (n=33). IL-12p40, IL-10, TGF-beta1, TNF-alpha and IL-1beta levels were significantly higher in patients with cervical cancer than in controls and CIN patients. The levels of IFN-gamma were not different. Our data demonstrate alterations in the local cervical immune environment in cervical cancer patients. This could have important consequences for the further development of immune modulating therapies and vaccination strategies.  相似文献   

10.
This paper presents a microchip-based system for collecting kinetic time-based information on protein refolding and unfolding. Dynamic protein conformational change pathways were studied in microchannel flow using a microfluidic device. We present a protein-conserving approach for quantifying refolding by dynamically varying the concentration of the chemical denaturants, guanidine hydrochloride and urea. Short diffusion distances in the microchannel result in rapid equilibrium between protein and titrating solutions. Dilutions on the chip were tightly regulated using pressure controls rather than syringe-based flow, as verified with extensive on-chip tracer dye controls. To validate this protein assay method, folding transition experiments were performed using two well-characterized proteins, human serum albumin (HSA) and bovine carbonic anhydrase (BCA). Transition events were monitored through fluorescence intensity shifts of the protein dye 8-anilino-1-naphthalenesulfonic acid (ANS) during dilutions of protein from urea or guanidine hydrochloride solutions. The enzymatic activity of refolded BCA was measured by UV absorption through the conversion of p-nitrophenyl acetate (p-NPA). The microchip protein refolding transitions using ANS were well-correlated with conventional plate-based experiments. The microfluidic platform enables refolding studies to identify rapidly the optimal folding strategy for a protein using small quantities of material.  相似文献   

11.
12.
13.
A method is described by which the measurement of the DNA content and the light scatter and the detection of a cervical carcinoma-associated antigen (CCA) of squamous epithelial cells can be simultaneously accomplished by flow cytometry (FCM). Cervicovaginal cellular samples obtained from 30 patients were analyzed by this method. Cell populations with an abnormal DNA content or with the presence of CCA were detected in 20 samples, 18 of which contained dysplastic cells as detected by routine cytologic screening. The remaining ten cases, which were interpreted as cytologically normal by routine screening, were also interpreted as normal by FCM analysis.  相似文献   

14.
The application of microchip capillary electrophoresis (CE) to the assay of extracellular signal-regulated protein kinase (ERK) is presented. In this assay, ERK catalyzes the transfer of gamma-phosphate from adenosine 5(')-triphosphate to the threonine residue of a fluorescently labeled nonapeptide (APRTPGGRR), and the phosphorylated and nonphosphorylated peptides were detected by fluorescence. The phosphorylated and nonphosphorylated peptides and the internal standard were separated within 20s, and the increase in magnitude of the phosphorylated peptide peak was monitored to assess ERK activity. ERK reactions were prepared off-chip and analyzed on a single-lane glass microchip fabricated by standard methods. It was demonstrated that microchip CE could be used to measure endogenous amounts of ERK by spiking known concentrations of recombinant ERK2 into the lysates of serum-starved human umbilical vein endothelial cells (HUVEC) and recovering between 90 and 100% for all samples. Endogenous ERK activity was determined by microchip where HUVEC were stimulated with 500pM vascular endothelial growth factor (VEGF) at different times before cell lysis. The results showed a transient VEGF-mediated ERK activation that peaked at 10min, which was consistent with previous reports using conventional techniques. The microchip assay provided a rapid, accurate, and precise alternative to conventional methods of determining endogenous ERK activity.  相似文献   

15.
This paper describes the on-line sample pretreatment and analysis of proteins and peptides with a poly(methylmethacrylate) (PMMA) microfluidic device (IonChip). This chip consists of two hyphenated electrophoresis channels with integrated conductivity detectors. The first channel can be used for sample preconcentration and sample clean-up, while in the second channel the selected compounds are separated. Isotachophoresis (ITP) combined with zone electrophoresis (CZE) was used to preconcentrate a myoglobin sample by a factor of about 65 before injection into the second dimension and to desalt a mixture of six proteins with 100 mM NaCl. However, ITP-CZE could not be used for the removal of two proteins from a protein/peptide sample since the protein zone in the ITP step was too small to remove certain compounds. Therefore, we used CZE-CZE for the removal of proteins from a protein/peptide mixture, thereby injecting only the peptides into the second CZE separation channel.  相似文献   

16.
Foetal cerebro-spinal fluid (CSF) has a very high protein concentration when compared to adult CSF, and in many species five major protein fractions have been described. However, the protein concentration and composition in CSF during early developmental stages remains largely unknown. Our results show that in the earliest stages (18 to 30 H.H.) of chick development there is a progressive increase in CSF protein concentration until foetal values are attained. In addition, by performing electrophoretic separation and high-sensitivity silver staining, we were able to identify a total of 21 different protein fractions in the chick embryo CSF. In accordance with the developmental pattern of their concentration, these can be classified as follows: A: high-concentration fractions which corresponded with the ones described in foetal CSF by other authors; B: low-concentration fractions which remained stable throughout the period studied; C: low-concentration fractions which show changes during this period. The evolution and molecular weight of the latter group suggest the possibility of an important biological role. Our data demonstrate that all the CSF protein fractions are present in embryonic serum; this could mean that the specific transport mechanisms in neuroepithelial cells described in the foetal period evolve in very early stages of development. In conclusion, this paper offers an accurate study of the protein composition of chick embryonic CSF, which will help the understanding of the influences on neuroepithelial stem cells during development and, as a result, the appropriate conditions for the in vitro study of embryonic/foetal nervous tissue cells.  相似文献   

17.
A CMOS fabricated silicon microchip was used as a platform for immunoassays and DNA synthesis and hybridization. The chip is covered with a biofriendly matrix wherein the chemistries occur. The active silicon chip has over 1000 active electrodes that can be individually addressed for both synthesis of DNA and protein attachment to a membrane on the chip surface. Additionally, the active chip can be further used for the detection of various analytes at the chip surface via digital read out resulting from the redox enzymes on the captured oligonucleotide or antibody.  相似文献   

18.
A rapid and sensitive microchip electrophoresis (MCE) method with laser induced fluorescence (LIF) detection has been developed for the quantification of D-tyrosine (Tyr) in biological samples. The assay was performed using a MCE-LIF system with glass/poly(dimethylsiloxane) (PDMS) hybrid microchip after pre-column derivatization of amino acids with fluorescein isothiocyanate (FITC). Chiral separation of the derivatives was achieved by cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) using γ-CD as chiral selector in the running buffer. D/L-Tyr enantiomer was well separated in less than 140s. The limit of detection (S/N=3) was 3.3 × 10(-8) M. Using the present method, D-Tyr level in human plasma was found to vary significantly from normal humans to patients suffering from renal failure.  相似文献   

19.
Complementary metal oxide semiconductor (CMOS) microelectronic chips fulfill important functions in the field of biomedical research, ranging from the generation of high complexity DNA and protein arrays to the detection of specific interactions thereupon. Nevertheless, the issue of merging pure CMOS technology with a chemically stable surface modification which further resists interfering nonspecific protein adsorption has not been addressed yet. We present a novel surface coating for CMOS microchips based on poly(ethylene glycol)methacrylate graft polymer films, which in addition provides high loadings of functional groups for the linkage of probe molecules. The coated microchips were compatible with the harshest conditions emerging in microarray generating methods, thoroughly retaining structural integrity and microelectronic functionality. Nonspecific adsorption of proteins on the chip's surface was completely obviated even with complex serum protein mixtures. We could demonstrate the background-free antibody staining of immobilized probe molecules without using any blocking agents, encouraging further integration of CMOS technology in proteome research.  相似文献   

20.
In the present study protein profile of a Candida albicans strain had been examined by chip technology and conventional capillary electrophoresis (CE). Profiles could be characterised by the presence of ten dominating protein peaks. These proteins could be distinguished by both techniques, but their quantity showed significant differences in the electropherograms obtained by CE and chip method. Changes in the protein profile were induced by administration of different antifungal agents. Fluconazole and amphotericin B treatment was able to induce similar changes in the pattern, appearance of a 40-kDa protein and up-regulation of a 60-kDa protein was observed by chip technology. Increase in the quantity of these proteins under stress effect (antifungal treatment) might refer to their stress function in the fungal cell. Treatment of C. albicans cells with MK 94 (fused cyclic Mannich ketone) antifungal compound induced not only the previously mentioned changes, but further specific alterations, appearance of a 19-kDa protein and up-regulation of the low molecular weight proteins. This might refer to the different mode of action of this agent on the fungal cells. Conventional capillary electrophoresis was suitable to detect the appearance of the 19-kDa peak, and up-regulation of the 60 kDa protein, but the other changes could not be detected by this technique. Shorter running time, more effective and baseline separation of proteins refer to the advantages of microchip-based method in the analysis of complex biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号