首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.  相似文献   

2.
In Sindbis virus, initiation of nucleocapsid core assembly begins with recognition of the encapsidation signal of the viral RNA genome by capsid protein. This nucleation event drives the recruitment of additional capsid proteins to fully encapsidate the genome, generating an icosahedral nucleocapsid core. The encapsidation signal of the Sindbis virus genomic RNA has previously been localized to a 132-nucleotide region of the genome within the coding region of the nsP1 protein, and the RNA-binding activity of the capsid was previously mapped to a central region of the capsid protein. It is unknown how capsid protein binding to encapsidation signal leads to ordered oligomerization of capsid protein and nucleocapsid core assembly. To address this question, we have developed a mobility shift assay to study this interaction. We have characterized a 32 amino acid peptide capable of recognizing the Sindbis virus encapsidation signal RNA. Using this peptide, we were able to observe a conformational change in the RNA induced by capsid protein binding. Binding is tight (K(d)(app) = 12 nM), and results in dimerization of the capsid peptide. Mutational analysis reveals that although almost every predicted secondary structure within the encapsidation signal is required for efficient protein binding, the identities of the bases within the helices and hairpin turns of the RNA do not need to be maintained. In contrast, two purine-rich loops are essential for binding. From these data, we have developed a model in which the encapsidation signal RNA adopts a highly folded structure and this folding process directs early events in nucleocapsid assembly.  相似文献   

3.
Bluetongue virus (BTV), a member of the Orbivirus genus within the Reoviridae family, has a genome of 10 double-stranded RNA segments, with three distinct size classes. Although the packaging of the viral genome is evidently highly specific such that every virus particle contains a set of 10 RNA segments, the order and mechanism of packaging are not understood. In this study we have combined the use of a cell-free in vitro assembly system with a novel RNA–RNA interaction assay to investigate the mechanism of single-stranded (ss) RNAs packaging during nascent capsid assembly. Exclusion of single or multiple ssRNA segments in the packaging reaction or their addition in different order significantly altered the outcome and suggested a particular role for the smallest segment, S10. Our data suggests that genome packaging probably initiates with the smallest segment which triggers RNA–RNA interaction with other smaller segments forming a complex network. Subsequently, the medium to larger size ssRNAs are recruited until the complete genome is packaging into the capsid. The untranslated regions of the smallest RNA segment, S10, is critical for the instigation of this process. We suggest that the selective packaging observed in BTV may also apply to other members of the Reoviridae family.  相似文献   

4.
5.
6.
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.  相似文献   

7.
8.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

9.
The nucleocapsid protein of HIV-1 consists of two basic amino acid regions and two zinc fingers. We investigated the requirement of these domains for the structural conversion of a 39mer RNA covering the dimerization initiation site by using three peptides; wild-type NCp7, a mutant in which the two zinc fingers are mutated, and another mutant in which the two zinc fingers are deleted. The two mutants exhibited similar conversion activities to each other, which were lower than that of the wild-type, indicating that the two basic regions exhibit some activity for RNA chaperone, as we suggested before, and the zinc fingers enhance the efficiency of this activity.  相似文献   

10.
Using cryo-electron microscopy, single particle image processing and three-dimensional reconstruction with icosahedral averaging, we have determined the three-dimensional solution structure of bacteriophage MS2 capsids reassembled from recombinant protein in the presence of short oligonucleotides. We have also significantly extended the resolution of the previously reported structure of the wild-type MS2 virion. The structures of recombinant MS2 capsids reveal clear density for bound RNA beneath the coat protein binding sites on the inner surface of the T = 3 MS2 capsid, and show that a short extension of the minimal assembly initiation sequence that promotes an increase in the efficiency of assembly, interacts with the protein capsid forming a network of bound RNA. The structure of the wild-type MS2 virion at ∼9 Å resolution reveals icosahedrally ordered density encompassing ∼90% of the single-stranded RNA genome. The genome in the wild-type virion is arranged as two concentric shells of density, connected along the 5-fold symmetry axes of the particle. This novel RNA fold provides new constraints for models of viral assembly.  相似文献   

11.
Escherichia coli contains five members of the DEAD-box RNA helicase family, a ubiquitous class of proteins characterized by their ability to unwind RNA duplexes. Although four of these proteins have been implicated in RNA turnover or ribosome biogenesis, no cellular function for the RhlE DEAD-box protein has been described as yet. During an analysis of the cold-sensitive growth defect of a strain lacking the DeaD/CsdA RNA helicase, rhlE plasmids were identified from a chromosomal library as multicopy suppressors of the growth defect. Remarkably, when tested for allele specificity, RhlE overproduction was found to exacerbate the cold-sensitive growth defect of a strain that lacks the SrmB RNA helicase. Moreover, the absence of RhlE exacerbated or alleviated the cold-sensitive defect of deaD or srmB strains, respectively. Primer extension and ribosome analysis indicated that RhlE regulates the accumulation of immature ribosomal RNA or ribosome precursors when deaD or srmB strains are grown at low temperatures. By using an epitope-tagged version of RhlE, the majority of RhlE in cell extracts was found to cosediment with ribosome-containing fractions. Since both DeaD and SrmB have been recently shown to function in ribosome assembly, these findings suggests that rhlE genetically interacts with srmB and deaD to modulate their function during ribosome maturation. On the basis of the available evidence, I propose that RhlE is a novel ribosome assembly factor, which plays a role in the interconversion of ribosomal RNA-folding intermediates that are further processed by DeaD or SrmB during ribosome maturation.  相似文献   

12.
The retroviral nucleocapsid (NC) protein is necessary for the specific encapsidation of the viral genomic RNA by the assembling virion. However, it is unclear whether NC contains the determinants for the specific recognition of the viral RNA or instead contributes nonspecific RNA contacts to strengthen a specific contact made elsewhere in the Gag polyprotein. To discriminate between these two possibilities, we have swapped the NC domains of the human immunodeficiency virus type 1 (HIV-1) and Moloney murine leukemia virus (M-MuLV), generating an HIV-1 mutant containing the M-MuLV NC domain and an M-MuLV mutant containing the HIV-1 NC domain. These mutants, as well as several others, were characterized for their abilities to encapsidate HIV-1, M-MuLV, and nonviral RNAs and to preferentially package genomic viral RNAs over spliced viral RNAs. We found that the M-MuLV NC domain mediates the specific packaging of RNAs containing the M-MuLV psi packaging element, while the HIV-1 NC domain confers an ability to package the unspliced HIV-1 RNA over spliced HIV-1 RNAs. In addition, we found that the HIV-1 mutant containing the M-MuLV NC domain exhibited a 20-fold greater ability than wild-type HIV-1 to package a nonviral RNA. These results help confirm the notion that the NC domain specifically recognizes the retroviral genomic RNA during RNA encapsidation.  相似文献   

13.
Saccharomyces cerevisiae RNA triphosphatase (Cet1) and RNA guanylyltransferase (Ceg1) interact in vivo and in vitro to form a bifunctional mRNA capping enzyme complex. Here we show that the guanylyltransferase activity of Ceg1 is highly thermolabile in vitro (98% loss of activity after treatment for 10 min at 35 degrees C) and that binding to recombinant Cet1 protein, or a synthetic peptide Cet1(232-265), protects Ceg1 from heat inactivation at physiological temperatures. Candida albicans guanylyltransferase Cgt1 is also thermolabile and is stabilized by binding to Cet1(232-265). In contrast, Schizosaccharomyces pombe and mammalian guanylyltransferases are intrinsically thermostable in vitro and they are unaffected by Cet1(232-265). We show that the requirement for the Ceg1-binding domain of Cet1 for yeast cell growth can be circumvented by overexpression in high gene dosage of a catalytically active mutant lacking the Ceg1-binding site (Cet1(269-549)) provided that Ceg1 is also overexpressed. However, such cells are unable to grow at 37 degrees C. In contrast, cells overexpressing Cet1(269-549) in single copy grow at all temperatures if they express either the S. pombe or mammalian guanylyltransferase in lieu of Ceg1. Thus, the cell growth phenotype correlates with the inherent thermal stability of the guanylyltransferase. We propose that an essential function of the Cet1-Ceg1 interaction is to stabilize Ceg1 guanylyltransferase activity rather than to allosterically regulate its activity. We used protein-affinity chromatography to identify the COOH-terminal segment of Ceg1 (from amino acids 245-459) as an autonomous Cet1-binding domain. Genetic experiments implicate two peptide segments, (287)KPVSLYVW(295) and (337)WQNLKNLEQPLN(348), as likely constituents of the Cet1-binding site on Ceg1.  相似文献   

14.
There is now considerable evidence that a specific site (or sites) in the genome of an RNA virus interacts with a viral protein to initiate the assembly of the virus ribonucleoprotein or nucleocapsid. We describe the progress that has been made in defining these elements for a number of different viruses: the togavirus, Sindbis virus; the coronavirus, mouse hepatitis virus; influenza A virus; several retroviruses; and the hepadnavirus, hepatitis B virus. The importance of cis-acting elements in packaging has been established for all of these viruses. For Sindbis virus, specificity in the binding of the RNA element to a region of the viral capsid protein in vitro has also been demonstrated.  相似文献   

15.
16.
Gammadelta T cells play important but poorly defined roles in pathogen-induced immune responses and in preventing chronic inflammation and pathology. A major obstacle to defining their function is establishing the degree of functional redundancy and heterogeneity among gammadelta T cells. Using mice deficient in Vgamma1+ T cells which are a major component of the gammadelta T cell response to microbial infection, a specific immunoregulatory role for Vgamma1+ T cells in macrophage and gammadelta T cell homeostasis during infection has been established. By contrast, Vgamma1+ T cells play no significant role in pathogen containment or eradication and cannot protect mice from immune-mediated pathology. Pathogen-elicited Vgamma1+ T cells also display different functional characteristics at different stages of the host response to infection that involves unique and different populations of Vgamma1+ T cells. These findings, therefore, identify distinct and nonoverlapping roles for gammadelta T cell subsets in infection and establish the complexity and adaptability of a single population of gammadelta T cells in the host response to infection that is not predetermined, but is, instead, shaped by environmental factors.  相似文献   

17.
Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation   总被引:11,自引:0,他引:11  
Hutvagner G 《FEBS letters》2005,579(26):5850-5857
  相似文献   

18.
19.
C L Liao  M M Lai 《Journal of virology》1992,66(10):6117-6124
Mouse hepatitis virus (MHV), a coronavirus, has been shown to undergo a high frequency of RNA recombination both in tissue culture and in animal infection. So far, RNA recombination has been demonstrated only between genomic RNAs of two coinfecting viruses. To understand the mechanism of RNA recombination and to further explore the potential of RNA recombination, we studied whether recombination could occur between a replicating MHV RNA and transfected RNA fragments. We first used RNA fragments which represented the 5' end of genomic-sense sequences of MHV RNA for transfection. By using polymerase chain reaction amplification with two specific primers, we were able to detect recombinant RNAs which incorporated the transfected fragment into the 5' end of the viral RNA in the infected cells. Surprisingly, even the anti-genomic-sense RNA fragments complementary to the 5' end of MHV genomic RNA could also recombine with the MHV genomic RNAs. This observation suggests that RNA recombination can occur during both positive- and negative-strand RNA synthesis. Furthermore, the recombinant RNAs could be detected in the virion released from the infected cells even after several passages of virus in tissue culture cells, indicating that these recombinant RNAs represented functional virion RNAs. The crossover sites of these recombinants were detected throughout the transfected RNA fragments. However, when an RNA fragment with a nine-nucleotide (CUUUAUAAA) deletion immediately downstream of a pentanucleotide (UCUAA) repeat sequence in the leader RNA was transfected into MHV-infected cells, most of the recombinants between this RNA and the MHV genome contained crossover sites near this pentanucleotide repeat sequence. In contrast, when exogenous RNAs with the intact nine-nucleotide sequence were used in similar experiments, the crossover sites of recombinants in viral genomic RNA could be detected at more-downstream sites. This study demonstrated that recombination can occur between replicating MHV RNAs and RNA fragments which do not replicate, suggesting the potential of RNA recombination for genetic engineering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号