首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new tetrahydroprotoberberine (THPB) derivatives were designed, synthesized, and tested for their binding affinity towards dopamine (D(1) and D(2)) and serotonin (5-HT(1A) and 5-HT(2A)) receptors. Many of the THPB compounds exhibited high binding affinity and activity at the dopamine D(1) receptor, as well as high selectivity for the D(1) receptor over the D(2), 5-HT(1A), and 5-HT(2A) receptors. Among these, compound 19c exhibited a promising D(1) receptor binding affinity (K(i)=2.53nM) and remarkable selectivity versus D(2)R (inhibition=81.87%), 5-HT(1A)R (inhibition=61.70%), and 5-HT(2A)R (inhibition=24.96%). Compared with l-(S)-stepholidine (l-SPD) (D(1)K(i)=6.23nM, D(2)K(i)=56.17nM), compound 19c showed better binding affinity for the D(1) receptor (2.5-fold higher) and excellent D(2)/D(1) selectivity. Functional assays found compounds 18j, 18k, and 19c are pure D(1) receptor antagonists. These results indicate that removing the C10 hydroxy group and introducing a methoxy group at C11 of the pharmacophore of l-SPD can reverse the function of THPB compounds at the D(1) receptor. These results are in accord with molecular docking studies.  相似文献   

2.
A new class of selective alpha(1) adrenoceptor antagonists derived from the antipsychotic drug sertindole is described. The most potent and selective compound 1-(2-(4-[5-aminomethyl-1-(4-fluorophenyl)-1H-indol-3-yl]-1-piperidinyl)ethyl)-2-imidazolidinone (11) binds with 0.50 nM affinity for alpha(1) adrenergic receptors and with more than 44 times lower affinity for dopamine D(2),D(3), D(4) and serotonin 5-HT(1A), 5-HT(1B), 5-HT(2A) and 5-HT(2C) receptors. The molecular features providing high affinity for adrenergic alpha(1) receptors and high selectivity towards dopamine D(2) and serotonin 5-HT(2A) and 5-HT(2C) receptors are discussed.  相似文献   

3.
A small series of N-propylnoraporphin-11-O-yl carboxylic esters with variant ester lengths were synthesized and their binding potencies at dopamine receptors (D(1), D(2)) and serotonin receptors (5-HT(1A), 5-HT(2A)) were evaluated. Monoesters 3a-f showed binding potency of 100 nM or less for the D(2) receptor, and potency of 10-30 nM for the 5-HT(1A) receptor. Butyryl ester 3d was found to be the best compound possessing the highest potency for both receptors, with K(i) values of 55 and 12 nM for D(2) and 5-HT(1A) receptors, respectively. There is no correlation between the binding potency and the length of the monoesters, but the diesters 9 and 10 were inactive for the D(2) receptor. The dual binding profile of these monoesters for the D(2) and 5-HT(1A) receptors may be useful for the treatment of neuropsychiatric disorders.  相似文献   

4.
The optically pure enantiomers of the potential atypical antipsychotic agents 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 5) and 5-methoxy-2-{N-[2-(2,6-dimethoxy)benzamidoethyl]-N-n-propylamino}t etralin [5-OMe-(2,6-di-OMe)-BPAT, 6] were synthesized and evaluated for their in vitro binding affinities at alpha1-, alpha2-, and beta-adrenergic, muscarinic, dopamine D1, D2A, and D3, and serotonin 5-HT1A and 5-HT2 receptors. In addition, their intrinsic efficacies at serotonin 5-HT1A receptors were established in vitro. (S)- and (R)-5 had high affinities for dopamine D2A, D3, and serotonin 5-HT1A receptors, moderate affinities for alpha1-adrenergic and serotonin 5-HT2 receptors, and no affinity (Ki > 1000 nM) for the other receptor subtypes. (S)- and (R)-6 had lower affinities for the dopamine D2A and the serotonin 5-HT1A receptor, compared to (S)- and (R)-5, and hence showed some selectivity for the dopamine D3 receptor. The interactions with the receptors were stereospecific, since the serotonin 5-HT1A receptor preferred the (S)-enantiomers, while the dopamine D2A and D3 receptors preferred the (R)-enantiomers of 5 and 6. The intrinsic efficacies at the serotonin 5-HT1A receptor were established by measuring their ability to inhibit VIP-induced cAMP production in GH4ZD10 cells expressing serotonin 5-HT1A receptors. Both enantiomers of 5 behaved as full serotonin 5-HT1A receptor agonists in this assay, while both enantiomers of 6 behaved as weak partial agonists. The potential antipsychotic properties of (S)- and (R)-5 were evaluated by establishing their ability to inhibit d-amphetamine-induced locomotor activity in rats, while their propensity to induce extrapyramidal side-effects (EPS) in man was evaluated by determining their ability to induce catalepsy in rats. Whereas (R)-5 was capable of blocking d-amphetamine-induced locomotor activity, indicative of dopamine D2 receptor antagonism, (S)-5 even enhanced the effect of d-amphetamine, suggesting that this compound has dopamine D2 receptor-stimulating properties. Since both enantiomers also were devoid of cataleptogenic activity, they are interesting candidates for further exploring the dopamine D2/serotonin 5-HT1A hypothesis of atypical antipsychotic drug action.  相似文献   

5.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

6.
In an effort to produce new pharmacological probes with mixed sigma/5-HT(1A) affinity, we have synthesized a series of 12 original 6-piperidino- or piperazino-alkyl-2(3H)-benzothiazolones and their receptor binding profile (sigma, 5-HT(1A), 5-HT(2A), 5-HT(3), D(2), H(1), and M(1)) was determined. The best mixed sigma/5-HT(1A) affinity profile was found within the piperidine series with 4-benzyl substitution associated to linker methylene chain n=2 (K(i) 5 and 4nM, respectively). Moreover, a highly selective sigma2 ligand was obtained with a 3,4-dichlorobenzyl substitution associated to n=4 (K(i) 2nM, selectivity ratio sigma1/sigma2=70).  相似文献   

7.
Starting with the structure of potent 5-HT(1A) ligands, that is, MM77 [1-(2-methoxyphenyl)-4-(4-succinimidobutyl)piperazine, 4] and its constrained version 5 (MP349), previously obtained in our laboratory, a series of their direct analogues with differently substituted aromatic ring (R=H, m-Cl, m-CF(3), m-OCH(3), p-OCH(3)) were synthesized. The flexible and the corresponding 1e,4e-disubstituted cyclohexane derivatives were designed in order to investigate the influence of rigidification on 5-HT(1A) affinity, selectivity for 5-HT(2A), 5-HT(7), D(1), and D(2) binding sites and functional profile at pre- and postsynaptic 5-HT(1A) receptors. The new compounds 19-25 were found to be highly active 5-HT(1A) receptor ligands (K(i)=4-44 nM) whereas their affinity for other receptors was: either significantly decreased after rigidification (5-HT(7)), or controlled by substituents in the aromatic ring (alpha(1)), or influenced by both those structural modifications (5-HT(2A)), or very low (D(2), K(i)=5.3-31 microM). Since a distinct disfavor towards rigid compounds was observed for 5-HT(7) receptors only, it seems that the bioactive conformation of chain derivatives at those sites should differ from the extended one. Several in vivo models were used to asses functional activity of 19-25 at pre- (hypothermia in mice) and postsynaptic 5-HT(1A) receptors (lower lip retraction in rats and serotonin syndrome in reserpinized rats). Unlike the parent antagonists 4 and 5, all the new derivatives tested were classified as partial agonists with different potency, however, similar effects were observed within pairs (flexible and rigid) of the analogues. The obtained results indicated that substitution in the aromatic ring, but not spacer rigidification, controls the 5-HT(1A) functional activity of the investigated compounds. Moreover, an o-methoxy substituent in the structure of 5 seems to be necessary for its full antagonistic properties. Of all the new compounds studied, trans-4-(4-succinimidocyclohexyl)-1-(3-trifluoromethylphenyl)piperazine 24 was the most potent 5-HT(1A) receptor ligand in vitro (K(i)=4 nM) and in vivo, with at least 100-fold selectivity for the other receptors tested.  相似文献   

8.
9.
New, flexible (7, 9, 11 and 13) and rigid (8, 10, 12 and 14) imides with a 1-(m-trifluorophenyl)piperazine fragment and a tetramethylene or a 1e,4e-cyclohexylene spacer, respectively, showed very high affinity (K(i)=0.3-34 nM) and agonistic in vivo activity for 5-HT(1A) receptors. Flexible new compounds and the previously described 5 also bound to 5-HT(7) receptors (K(i)=21-134 nM). Selected glutarimide derivatives, that is, the most potent postsynaptic 5-HT(1A) receptor agonist rigid compound 8 and its flexible analogue 7, as well as the previously described full agonist-rigid compound 6 and the partial agonist-its flexible counterpart 5 exhibited moderate affinity for alpha(1)-adrenoceptors (K(i)=85 - 268 nM), but were practically devoid of any affinity for dopamine D(2) sites. Those glutarimides demonstrated anxiolytic- (5 and 7) and antidepressant-like (5, 6 and 8) activity in the four-plate and the swim tests in mice, respectively; at the same time, however, they inhibited the locomotor activity of mice. The antidepressant-like effect of 8 was significantly stronger than that induced by imipramine used as a reference antidepressant.  相似文献   

10.
A 5,7-dichloro-3-phenyl-3-methyl-quinoline-2,4-dione (11a) has been identified in a random screen as a lead for 5-HT(6) antagonist. During the lead optimization process, several analogs were synthesized and their biological activities were investigated. Within this series, several compounds display high binding affinity and selectivity for the 5-HT(6) receptor. In particular, 3-(4-hydroxyphenyl)-3-methyl-quinoline-2,4-dione (12f) exhibits high affinity (K(i)=12.3 nM) for 5-HT(6) receptor with good selectivity over other serotonin and dopamine (D(1)-D(4)) receptor subtypes. In a functional adenylyl cyclase stimulation assay, this compound exhibited considerable antagonistic activity (IC(50)=0.61 microM).  相似文献   

11.
A series of conformationally-flexible analogues was prepared and their affinities for D2-like dopamine (D2, D3 and D4) were determined using in vitro radioligand binding assays. The results of this structure-activity relationship study identified one compound, 15, that bound with high affinity (K(i) value=2nM) and moderate selectivity (30-fold) for D3 compared to D2 receptors. In addition, this series of compounds were also tested for affinity at sigma1 and sigma2 receptors. We evaluated the affinity of these dopaminergic compounds at sigma receptors because (a) several antipsychotic drugs, which are high affinity antagonists at dopamine D2-like receptors, also bind to sigma receptors and (b) sigma receptors are expressed ubiquitously and at high levels (picomoles per mg proteins). It was observed that a number of analogues displayed high affinity and excellent selectivity for sigma2 versus sigma1 receptors. Consequently, these novel compounds may be useful for characterizing the functional role of sigma2 receptors and for imaging the sigma2 receptor status of tumors in vivo with PET.  相似文献   

12.
New benzimidazole-4-carboxamides 1-16 and -carboxylates 17-26 were synthesized and evaluated for binding affinity at serotonergic 5-HT4 and 5-HT3 receptors in the CNS. Most of the synthesized compounds exhibited moderate-to-very high affinity (in many cases subnanomolar) for the 5-HT4 binding site and no significant affinity for the 5-HT3 receptor. SAR observations and structural analyses (molecular modeling, INSIGHT II) indicated that the presence of a voluminous substituent in the basic nitrogen atom of the amino moiety and a distance of ca. 8.0 A from this nitrogen to the aromatic ring are of great importance for high affinity and selectivity for 5-HT4 receptors. These results confirm our recently proposed model for recognition by the 5-HT4 binding site. Amides 12-15 and esters 24 and 25 bound at central 5-HT4 sites with very high affinity (Ki = 0.11-2.9 nM) and excellent selectivity over serotonin 5-HT3, 5-HT2A, and 5-HT1A receptors (Ki > 1000-10,000 nM). Analogues 12 (Ki(5-HT4) = 0.32 nM), 13 (Ki(5-HT4) = 0.11 nM), 14 (Ki(5-HT4) = 0.29 nM) and 15 (Ki(5-HT4) = 0.54 nM) were pharmacologically characterized as selective 5-HT4 antagonists in the isolated guinea pig ileum (pA2 = 7.6, 7.9, 8.2 and 7.9, respectively), with a potency comparable to the 5-HT4 receptor antagonist RS 39604 (pA2 = 8.2). The benzimidazole-4-carboxylic acid derivatives described in this paper represent a novel class of potent and selective 5-HT4 receptor antagonists. In particular, compounds 12-15 could be interesting pharmacological tools for the understanding of the role of 5-HT4 receptors.  相似文献   

13.
《Life sciences》1993,53(18):PL285-PL290
It has been suggested that sigma receptor antagonists may be useful as antipsychotic drugs. N, N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE-100) is a novel compound with high affinity for the sigma receptor (IC50 = 4.16 nM), but low affinity (IC50 > 1000 nM) for D1, D2, 5-HT1A, 5-HT2 and phencyclidine (PCP) receptors. The head-weaving behavior induced by either (+)SKF10047 or PCP was dose-dependently antagonized by NE-100 with oral ED50 at 0.27 and 0.12 mg/kg, respectively. NE-100 did not affect dopamine agonists-induced stereotyped behavior and/or hyperactivity. NE-100 failed to induce catalepsy in rats. These findings indicate that NE-100 may have antipsychotic activity without the liability of motor side effects typical of neuroleptics.  相似文献   

14.
In the present paper, we report the synthesis and the binding profiles on 5-HT1A, D2, and alpha1 receptors of 1-substituted-4-[3-(5- or 7-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine derivatives 19-32 and some related heteroalkyl derivatives 33-35. The results obtained are compared to those previously reported for the 1-phenyl, 1-(2-methoxyphenyl), 1-(2-pyridyl) analogues 2-9. The results pointed out the critical role of the group linked in the N-1 position of the piperazine in terms of 5-HT1A binding affinity. In fact, 1-cyclohexyl, 1-(3-benzisoxazolyl), 1-(benzothiazole-2-carbonyl), 1-(2-benzothiazolyl), 1-(2-quinolyl) substituted piperazines 21-30 displayed moderate or low 5-HT1A receptor affinity; on the contrary, 1-(3-benzisothiazolyl) and 1-(1-naphthalenyl) substituted piperazines 19, 20 and 32 displayed high 5-HT1A receptor affinity, the Ki values being in the subnanomolar range. Furthermore, compounds 19, 20 and 32 demonstrated better selectivity over alpha1 receptors than the reference compounds 2-9.  相似文献   

15.
Several N-substituted-11-hydroxy-10-hydroxymethyl- and 11-hydroxy-10-methylaporphines were synthesized and their binding affinities at dopamine D(1) and D(2) receptors and serotonin 5-HT(1A) and 5-HT(2A) receptors in rat forebrain tissue were evaluated. Tested compounds displayed moderate to high affinity to 5-HT(1A) receptors but low affinity to D(1) and D(2) receptors. The most potent novel 5-HT(1A) agent was R-(-)-N-methyl-10-hydroxymethyl-11-hydroxyaporphine.  相似文献   

16.
A test series of 32 phenylpiperazines III with affinity for 5-HT1A and alpha1 receptors was subjected to QSAR analysis using artificial neural networks (ANNs), in order to get insight into the structural requirements that are responsible for 5-HT1A/alpha1 selectivity. Good models and predictive power were obtained for 5-HT1A and alpha1 receptors. A comparison of these models gives information for the design of the new ligand EF-7412 (5-HT1A:Ki(nM)= 27; alpha1: Ki(nM) > 1000). This derivative displayed affinity for dopamine D2 receptor (Ki = 22 nM) and is selective for all other receptor examined (5-HT2A, 5-HT3, 5-HT4 and Bz). EF-7412 acts an antagonist in vivo in pre- and postsynaptic 5-HT1A receptor sites and as an antagonist in dopamine D2 receptor.  相似文献   

17.
Six active compounds, among previously synthesized and screened arylpiperazines, were selected and evaluated for the binding affinity to rat dopamine, serotonin and alpha(1) receptors. Two compounds with benztriazole group had a 5-HT(2A)/D(2) binding ratio characteristic for atypical neuroleptics (>1, pK(i) values). Compound 2, 5-[2-[4-(2,3-dimethyl-phenyl)-piperazin-1-yl]ethyl]1H-benzotriazole, expressed clozapine-like in vitro binding profile at D(2), 5-HT(2A) and alpha 1 receptors and a higher affinity for 5-HT(1A) receptors than clozapine. Also, it exhibited the noncataleptic behavioural pattern of atypical antipsychotics and antagonized d-amphetamine-induced hyperlocomotion in rats.  相似文献   

18.
Several structural analogues of 5-methoxy-2-[N-(2-benzamidoethyl)-N-n-propylamino]tetralin (5-OMe-BPAT, 1), a representative of a series of 2-aminotetralin-derived benzamides with potential atypical antipsychotic properties, were synthesized and evaluated for their ability to bind to dopamine D2A, D3, and serotonin 5-HT1A receptors in vitro. The structure affinity relationships revealed that the aromatic ring of the benzamide moiety of 1 contributes to the high affinities for all three receptor subtypes. Furthermore, 1 may interact with the dopamine D2 and D3 receptors through hydrogen bond formation with its carbonyl group. Investigation of the role of the amide hydrogen atom by amide N-alkylation was not conclusive, since conformational aspects may be responsible for the decreased dopaminergic affinities of the N'-alkylated analogues of 1. The effects of the amide modifications on the serotonin 5-HT1A receptor affinity were less pronounced, suggesting that the benzamidoethyl side-chain of 1 as a whole enhances the affinity for this receptor subtype probably through hydrophobic interactions with an accessory binding site. The structural requirements for the substituents at the basic nitrogen atom supported the hypothesis that the 2-aminotetralin moieties of the 2-aminotetralin-derived substituted benzamides may share the same binding sites as the 2-(N,N-di-n-propylamino)tetralins.  相似文献   

19.
A series of 1- and 2-naphthamides has been prepared and tested for in vitro binding to D(2L), D(4.2), and 5-HT(2A) receptors. Different compounds display selectivity for D(4.2) and 5-HT(2A) receptors versus D(2L) receptors. N-(1-Arylalkyl-piperidin-4-yl) carboxamides have higher affinities than the corresponding N-(4-arylalkylamino-piperidin-1-yl) carboxamide analogues. A benzyl moiety in position 1 of the piperidine in the 2-naphthamide series (2) appears to be the best choice for a favorable interaction with D(4.2) and 5-HT(2A) receptors. Increasing the linker length between the phenyl ring and the basic nitrogen led to a decreased affinity for these receptors. In the 1-naphthamide series, the most potent D(4.2) ligand (7) possesses a phenylpropyl moiety while its affinity for 5-HT(2A) receptors is strongly reduced. All compounds with significant affinity for D(4.2) and 5-HT(2A) receptors were antagonists.  相似文献   

20.
On the basis of our earlier studies with the serotonin receptor ligands in the group of 1,3-dimethyl-3,7-dihydropurine-2,6-dione derivatives, a series of new arylpiperazinylalkyl and tetrahydroisoquinolinylalkyl analogs of 8-alkoxy-1,3-dimethyl-3,7-dihydropurine-2,6-dione (10-25) and 1,3-dimethyl-7,9-dihydro-3H-purine-2,6,8-trione (26-30) were synthesized and their 5-HT(1A), 5-HT(2A), and 5-HT(7) receptor affinities were determined. The new compounds 17, 18, 20, and 21 were found to be highly active 5-HT(1A) receptor ligands (K(i)=11-19nM) with diversified affinity for 5-HT(2A) receptors (K(i)=15-253nM). Compounds 12, 13, 15, and 19 were moderately potent 5-HT(2A) ligands (K(i)=23-57nM), whereas 17, 18, 24, and 25 showed distinct affinity for 5-HT(7) receptors (K(i)=51-83nM). Purine-2,6,8-triones showed weak affinities for 5-HT(1A) and 5-HT(7) receptors; among them, 27 and 29 were classified as 5-HT(2A) receptor ligands. The selected compounds 17 and 21 were pharmacologically evaluated to determine their functional activities at pre-(hypothermia in mice) and post-(lower lip retraction in rats) synaptic 5-HT(1A) receptors. Compound 17 showed features of a potential agonist of pre- and post-synaptic 5-HT(1A) receptors, whereas 21 was classified as a potential, weak partial agonist of postsynaptic sites. Last of all, the most interesting compound 17 tested in behavioral models showed potential anxiolytic and antidepressant activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号