首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinach (Spinacia oleracea) plants were subjected to salt stress by adding NaCl to the nutrient solution in increments of 25 millimolar per day to a final concentration of 200 millimolar. Plants were harvested 3 weeks after starting NaCl treatment. Fresh and dry weight of both shoots and roots was decreased more than 50% compared to control plants but the salt-stressed plants appeared healthy and were still actively growing. The salt-stressed plants had much thicker leaves. The salt-treated plants osmotically adjusted to maintain leaf turgor. Leaf K+ was decreased but Na+ and Cl were greatly increased.

The potential photosynthetic capacity of the leaves was measured at saturating CO2 to overcome any stomatal limitation. Photosynthesis of salt-stressed plants varied only by about 10% from the controls when expressed on a leaf area or chlorophyll basis. The yield of variable chlorophyll a fluorescence from leaves was not affected by salt stress. Stomatal conductance decreased 70% in response to salt treatment.

Uncoupled rates of electron transport by isolated intact chloroplasts and by thylakoids were only 10 to 20% below those for control plants. CO2-dependent O2 evolution was decreased by 20% in chloroplasts isolated from salt-stressed plants. The concentration of K+ in the chloroplast decreased by 50% in the salt-stressed plants, Na+ increased by 70%, and Cl increased by less than 20% despite large increases in leaf Na+ and Cl.

It is concluded that, for spinach, salt stress does not result in any major decrease in the photosynthetic potential of the leaf. Actual photosynthesis by the plant may be reduced by other factors such as decreased stomatal conductance and decreased leaf area. Effective compartmentation of ions within the cell may prevent the accumulation of inhibitory levels of Na+ and Cl in the chloroplast.

  相似文献   

2.
Robinson SP 《Plant physiology》1985,79(4):996-1002
Spinach leaf chloroplasts isolated in isotonic media (330 millimolar sorbitol, −1.0 megapascals osmotic potential) had optimum rates of photosynthesis when assayed at −1.0 megapascals. When chloroplasts were isolated in hypertonic media (720 millimolar sorbitol, −2.0 megapascals osmotic potential) the optimum osmotic potential for photosynthesis was shifted to −1.8 megapascals and the chloroplasts had higher rates of CO2-dependent O2 evolution than chloroplasts isolated in 330 millimolar sorbitol when both were assayed at high solute concentrations.

Transfer of chloroplasts isolated in 330 millimolar sorbitol to 720 millimolar sorbitol resulted in decreased chloroplast volume but this shrinkage was only transient and the chloroplasts subsequently swelled so that within 2 to 3 minutes at 20°C the chloroplast volume had returned to near the original value. Thus, actual steady state chloroplast volume was not decreased in hypertonic media. In isotonic media, there was a slow but significant uptake of sorbitol by chloroplasts (10 to 20 micromoles per milligram chlorophyll per hour at 20°C). Transfer of chloroplasts from 330 millimolar sorbitol to 720 millimolar sorbitol resulted in rapid uptake of sorbitol (up to 280 micromoles per milligram chlorophyll per hour at 20°C) and after 5 minutes the concentration of sorbitol inside the chloroplasts exceeded 500 millimolar. This uptake of sorbitol resulted in a significant underestimation of chloroplast volume unless [14C]sorbitol was added just prior to centrifuging the chloroplasts through silicone oil. Sudden exposure to osmotic stress apparently induced a transient change in the permeability of the chloroplast envelope since addition of [14C]sorbitol 3 minutes after transfer to hypertonic media (when chloroplast volume had returned to normal) did not result in rapid uptake of labeled sorbitol.

It is concluded that chloroplasts can osmotically adjust in vitro by uptake of solutes which do not normally penetrate the chloroplast envelope, resulting in a restoration of normal chloroplast volume and partially preventing the inhibition of photosynthesis by high solute concentrations. The results indicate the importance of matching the osmotic potential of isolation media to that of the tissue, particularly in studies of stress physiology.

  相似文献   

3.
Photosynthesis, stroma-pH, and internal K+ and Cl concentrations of isolated intact chloroplasts from Spinacia oleracea, as well as ion (K+, H+, Cl) movements across the envelope, were measured over a wide range of external KCl concentrations (1-100 millimolar).

Isolated intact chloroplasts are a Donnan system which accumulates cations (K+ or added Tetraphenylphosphonium+) and excludes anions (Cl) at low ionic strength of the medium. The internally negative dark potential becomes still more negative in the light as estimated by Tetraphenylphosphonium+ distribution. At 100 millimolar external KCl, potentials both in the light and in the dark and also the light-induced uptake of K+ or Na+ and the release of protons all become very small. Light-induced K+ uptake is not abolished by valinomycin suggesting that the K+ uptake is not primarily active. Intact chloroplasts contain higher K+ concentrations (112-157 millimolar) than chloroplasts isolated in standard media. Photosynthetic activity of intact chloroplasts is higher at 100 millimolar external KCl than at 5 to 25 millimolar. The pH optimum of CO2 fixation at high K+ concentrations is broadened towards low pH values. This can be correlated with the observation that high external KCl concentrations at a constant pH of the suspending medium produce an increase of stroma-pH both in the light and in the dark. These results demonstrate a requirement of high external concentrations of monovalent cations for CO2 fixation in intact chloroplasts.

  相似文献   

4.
Intracellular compartmentation of ions in salt adapted tobacco cells   总被引:33,自引:13,他引:20       下载免费PDF全文
Na+ and Cl are the principal solutes utilized for osmotic adjustment in cells of Nicotiana tabacum L. var Wisconsin 38 (tobacco) adapted to NaCl, accumulating to levels of 472 and 386 millimolar, respectively, in cells adapted to 428 millimolar NaCl. X-ray microanalysis of unetched frozen-hydrated cells adapted to salt indicated that Na+ and Cl were compartmentalized in the vacuole, at concentrations of 780 and 624 millimolar, respectively, while cytoplasmic concentrations of the ions were maintained at 96 millimolar. The morphometric differences which existed between unadapted and salt adapted cells, (cytoplasmic volume of 22 and 45% of the cell, respectively), facilitated containment of the excited volume of the x-ray signal in the cytoplasm of the adapted cells. Confirmation of ion compartmentation in salt adapted cells was obtained based on kinetic analyses of 22Na+ and 36Cl efflux from cells in steady state. These data provide evidence that ion compartmentation is a component of salt adaptation of glycophyte cells.  相似文献   

5.
Solute Accumulation in Tobacco Cells Adapted to NaCl   总被引:18,自引:9,他引:9       下载免费PDF全文
Cells of Nicotiana tabacum L. var Wisconsin 38 adapted to NaCl (up to 428 millimolar) which have undergone extensive osmotic adjustment accumulated Na+ and Cl as principal solutes for this adjustment. Although the intracellular concentrations of Na+ and Cl correlated well with the level of adaptation, these ions apparently did not contribute to the osmotic adjustment which occurred during a culture growth cycle, because the concentrations of Na+ and Cl did not increase during the period of most active osmotic adjustment. The average intracellular concentrations of soluble sugars and total free amino acids increased as a function of the level of adaptation; however, the levels of these solutes did not approach those observed for Na+ and Cl. The concentration of proline was positively correlated with cell osmotic potential, accumulating to an average concentration of 129 millimolar in cells adapted to 428 millimolar NaCl and representing about 80% of the total free amino acid pool as compared to an average of 0.29 millimolar and about 4% of the pool in unadapted cells. These results indicate that although Na+ and Cl are principal components of osmotic adjustment, organic solutes also may make significant contributions.  相似文献   

6.
Long JM  Widders IE 《Plant physiology》1990,94(3):1040-1047
K+ content and concentration within the apoplast of mesophyll tissue of pea (Pisum sativum L., cv Argenteum) leaflets were determined using an elution procedure. Following removal of the epidermis, a 1 centimeter (inside diameter) glass cylinder was attached to the exposed mesophyll tissue and filled with 5 millimolar CaCl2 solution (1°C). From time-course curves of cumulative K+ diffusion from the tissue, the amount of K+ of extracellular origin was estimated. Apoplastic K+ contents for leaves from plants cultured in nutrient solution containing 2 or 10 millimolar K+ were found to range from 1 to 4.5 micromoles per gram fresh weight, comprising less than 3% of the total K+ content within the lamina tissue. Assuming an apoplastic solution volume of 0.04 to 0.1 milliliters per gram fresh weight and a Donnan cation exchange capacity of 2.63 micromoles per gram fresh weight (experimentally determined), the K+ concentration within apoplastic solution was estimated at 2.4 to 11.8 millimolar. Net movement of Rb+ label from the extracellular compartment within mesophyll tissue into the symplast was demonstrated by pulse-chase experiments. It was concluded that the mesophyll apoplast in pea has a relatively low capacitance as an ion reservoir. Apoplastic K+ content was found to be highly sensitive to changes in xylem solution concentration.  相似文献   

7.
Two cultivars of soybean (Glycine max [L.] Merr.) were grown in solution with up to 100 millimolar NaCl. Leaf solute potential was −1.1 to −1.2 megapascals in both cultivars without NaCl. At 100 millimolar NaCl leaf solute potential was −3.1 to −3.5 megapascals in Bragg and −1.7 megapascals in Ransom. The decrease in solute potential was essentially proportional to the concentration of NaCl. In both salt susceptible Bragg and salt semitolerant Ransom, leaf proline was no more than 0.4 micromole per gram fresh weight at or below 20 millimolar NaCl. At 40 and 60 millimolar NaCl, Bragg leaf proline levels were near 1.2 and 1.9 micromoles per gram fresh weight, respectively. Proline did not exceed 0.5 micromole per gram fresh weight in Ransom even at 100 millimolar NaCl. Proline accumulated in Bragg only after stress was severe enough to induce injury; therefore proline accumulation is not a sensitive indicator of salt stress in soybean plants.  相似文献   

8.
Huber SC  Maury W 《Plant physiology》1980,65(2):350-354
Exogenous Mg2+ (2 millimolar) altered the stromal pH of intact spinach chloroplasts. Without added KCl in the medium, Mg2+ decreased the stromal pH in the light by approximately 0.3 pH unit. External KCl (25 millimolar) largely prevented the acidification caused by Mg2+. Effects on the stromal pH were not caused by changes in H+ pumping across the thylakoid membrane because Mg2+ had no effect on the light-induced quenching of atebrin fluorescence by intact chloroplasts. However, Mg2+ affected H+ fluxes across the envelope. Addition of Mg2+ to intact chloroplasts in the dark caused a significant acidification of the medium that was dependent on the presence of K+.  相似文献   

9.
Spinach (Spinacia oleracea var “Yates”) plants in hydroponic culture were exposed to stepwise increased concentrations of NaCl or NaNO3 up to a final concentration of 300 millimoles per liter, at constant Ca2+-concentration. Leaf cell sap and extracts from aqueously isolated spinach chloroplasts were analyzed for mineral cations, anions, amino acids, sugars, and quarternary ammonium compounds. Total osmolality of leaf sap and photosynthetic capacity of leaves were also measured. For comparison, leaf sap from salt-treated pea plants was also analyzed. Spinach plants under NaCl or NaNO3 salinity took up large amounts of sodium (up to 400 millimoles per liter); nitrate as the accompanying anion was taken up less (up to 90 millimoles per liter) than chloride (up to 450 millimoles per liter). Under chloride salinity, nitrate content in leaves decreased drastically, but total amino acid concentrations remained constant. This response was much more pronounced (and occurred at lower salt concentrations) in leaves from the glycophyte (pea, Pisum sativum var “Kleine Rheinländerin”) than from moderately salt-tolerant spinach. In spinach, sodium chloride or nitrate taken up into leaves was largely sequestered in the vacuoles; both salts induced synthesis of quarternary ammonium compounds, which were accumulated mainly in chloroplasts (and cytosol). This prevented impairment of metabolism, as indicated by an unchanged photosynthetic capacity of leaves.  相似文献   

10.
Addition of exogenous Mg2+ (2 millimolar) to illuminated intact spinach (Spinacia oleracea L.) chloroplasts caused acidification of the stroma and a 20% decrease in stromal K+. Addition of K+ (10-50 millimolar) reversed both stromal acidification and K+ efflux from the chloroplast caused by Mg2+. These data suggested that Mg2+ induced reversible H+/K+ fluxes across the chloroplast envelope. Ca2+ and Mn2+ (2 millimolar) were as effective as 4 millimolar Mg2+ in causing K+ efflux from chloroplasts and inhibition of O2 evolution. In contrast, 10 millimolar Ba2+ induced only a small amount of inhibition. The lack of strong inhibition by Ba2+ indicated that the effects of divalent cations such as Mg2+ cannot be attributed to generalized electrostatic interactions of the cation with the chloroplast envelope. With the chloroplasts used in this study, stromal acidification caused by 2 millimolar Mg2+ was small (0.07 to 0.15 pH units), but sufficient to account for the inhibition of O2 evolution (43%) induced by Mg2+.  相似文献   

11.
Leaf pavement cell expansion in light depends on apoplastic acidification by a plasma membrane proton-pumping ATPase, modifying cell wall extensibility and providing the driving force for uptake of osmotically active solutes generating turgor. This paper shows that the plant hormone ABA inhibits light-induced leaf disk growth as well as the blue light-induced pavement cell growth in pea (Pisum sativum L.). In the phytochrome chromophore-deficient mutant pcd2, the effect of ABA on the blue light-induced apoplastic acidification response, which exhibits a high fluence phase via phytochrome and a low fluence phase via an unknown blue light receptor, is still present, indicating an interaction of ABA with the blue light receptor pathway. Furthermore, it is shown that ABA inhibits the blue light-induced apoplastic acidification reversibly. These results indicate that the effect of ABA on apoplastic acidification can provide a mechanism for short term, reversible adjustment of leaf growth rate to environmental change.Key Words: ABA, apoplastic acidification, blue light, epidermal pavement cell growth, leaf growth, pea (Pisum sativum L.), signal integration  相似文献   

12.
All the glutamate dehydrogenase activity in developing castor bean endosperm is shown to be located in the mitochondria. The enzyme can not be detected in the plastids, and this is probably not due to the inactivation of an unstable enzyme, since a stable enzyme can be isolated from castor bean leaf chloroplasts. The endosperm mitochondrial glutamate dehydrogenase consists of a series of differently charged forms which stain on polyacrylamide gel electrophoresis with both NAD+ and NADP+. The chloroplast and root enzymes differ from the endosperm enzyme on polyacrylamide gel electrophoresis. The amination reaction of all the enzymes is affected by high salt concentrations. For the endosperm enzyme, the ratio of activity with NADH to that with NADPH is 6.3 at 250 millimolar NH4Cl and 1.5 at 12.5 millimolar NH4Cl. Km values for NH4+ and NAD(P)H are reduced at low salt concentrations. The low Km values for the nucleotides may favor a role for glutamate dehydrogenase in ammonia assimilation in some situations.  相似文献   

13.
When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.Abbreviations ASM artificial stroma medium - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate-carboxylase/oxygenase - RWC relative water content  相似文献   

14.
Wheat irrigated with nutrient solutions containing 0, 0.2, 0.5, 1, 2, or 6 millimolar K+ had maximum photosynthetic rates at 1 to 2 millimolar K+ concentrations. Rates in the 6 millimolar K+-grown plants were not higher than the 2 millimolar K+-grown wheat, and rates were inhibited below 0.5 millimolar K+. Photosynthesis was measured by both attached whole leaf CO2 uptake and by 14CO2 fixation of leaf slices in solution. Exposure of leaf slices from 0.2, 2, and 6 millimolar K+-grown wheat to various assay media water potentials showed that photosynthesis of the 0.2 millimolar K+-grown wheat decreased from control (high water potential) rates by 35%, that of the 2 millimolar K+-grown wheat by 20.4%, and that of the 6 millimolar K+-grown wheat by only 8.3% at −3.11 megapascals. Also, photosynthesis of the 6 millimolar K+-grown wheat was enhanced by 28% over that of the 2 millimolar K+ wheat at the most severe water stress (−3.11 megapascals), indicating that the excess leaf K+ in the 6 millimolar K+-grown wheat partially reversed dehydration effects on photosynthesis. Oligomycin eliminated the protective effects of high K+ on photosynthesis in dehydrated leaf slices. These results suggest that the protective effect of high K+ under water stress may involve the exchange of K+ in the cytoplasm for stroma H+, thus altering stromal pH and restoring photosynthesis. The protective effect of high K+ was also observed in attached whole leaf photosynthesis of in situ water-stressed wheat grown on 0.2, 2, and 6 millimolar K+. Under water stress, rates of the 6 millimolar K+-grown wheat were enhanced by 66.2% and 113.9% over that of 2 millimolar K+-grown wheat in two separate experiments. Internal CO2 concentration of the 6 millimolar K+-grown wheat was lower than that of the 0.2 and 2 millimolar K+-grown wheat. These results suggest that the high K+ effects on chloroplast photosynthesis seen in leaf slices also occur at the whole plant level.  相似文献   

15.
Mechanism of glycolate transport in spinach leaf chloroplasts   总被引:5,自引:4,他引:1       下载免费PDF全文
Takabe T  Akazawa T 《Plant physiology》1981,68(5):1093-1097
The incorporation of 14CO2 into glycolate by intact spinach leaf (Spinacia oleracea L. var. Kyoho) chloroplasts exposed to 14CO2 (NaH14CO3, 1 millimolar) in the light was determined as a function of O2 concentrations in the reaction media. A hyperbolic saturation curve was obtained, apparent Km (O2) of 0.28 millimolar, indicating that glycolate is produced predominantly by ribulose-1,5-bisphosphate carboxylase/oxygenase. A concentration gradient of glycolate was invariably observed between chloroplast stroma and the outside media surrounding chloroplasts during photosynthetic 14CO2 fixation under an O2 atmosphere.  相似文献   

16.
The concentrations of vacuolar Na+ and Cl in the epidermal and mesophyll cells of the leaf blade and sheath of Hordeum vulgare seedlings (cv California Mariout and Clipper) were measured by means of quantitative electron probe x-ray microanalysis. A preferential accumulation of Cl in vacuoles of epidermal cells in both blade and sheath and a low level in mesophyll cells of the blade were evident in plants grown in full strength Johnson solution. The concentration of Cl in the mesophyll cells of the blade remained at a low level after exposure to 50 or 100 millimolar NaCl for 1 day or to 50 millimolar for 4 days, while at the same time the concentration of Cl in the epidermis and mesophyll of the sheath showed a dramatic increase. Clipper generally contained more Cl in the mesophyll cells of the blade than California Mariout. A greater accumulation of Na+ in the mesophyll of the sheath relative to that of the blade was only apparent after treatment with 100 millimolar NaCl for 1 day or 50 millimolar for 4 days. These results confirm the suggestion that sheath tissue is capable of accumulating excess Cl (and to a lesser extent Na+) and suggest that the site of regulation of Cl concentration in the barley leaf is located in the mesophyll cells of the blade.  相似文献   

17.
Light- and HCO3-saturated (10 millimolar) rates of O2 evolution (120 to 220 micromoles O2 per milligram chlorophyll per hour), obtained with intact spinach chloroplasts, are decreased up to 3-fold by changes in assay conditions such as omission of catalase from the medium, the use of high (≥1 millimolar) inorganic phosphate, inclusion of NO2 as an electron acceptor, or bright illumination at low partial pressures of O2. These inhibitions may be reversed by addition of uncoupling levels of NH4Cl or of antimycin concentrations that partially block cyclic electron transfer between cytochrome b6 and cytochrome f. Measurements of the pH gradient across the thylakoid membrane with the fluorescent probe, 9-aminoacridine, indicate that changes in ΔpH are sufficient to account for both the inhibited and restored rates of electron transport. It follows that the rate of HCO3-saturated photosynthesis may be restricted by a proton gradient back pressure under these conditions.  相似文献   

18.
Steady state proline levels in salt-shocked barley leaves   总被引:3,自引:1,他引:2       下载免费PDF全文
Excised barley (Hordeum vulgare var Larker) leaves were treated with salt solutions or wilted. After the treatment period, the leaves were allowed to recover in a 50 millimolar sucrose and 1 millimolar glutamate solution, and proline, Na+, and K+ were measured at intervals. Na+ and K+ concentrations stayed at a constant high level after the salt treatments, and proline increased to a steady state concentration in response. The relationship between the maximum rate of proline accumulation and the Na+ concentration reached in each experiment was linear. The final steady state proline concentration reached was also directly proportional to the Na+ concentration. For a given Na+ concentration in the leaves, the steady state proline level was greater when 410 millimolar NaCl was added to the leaves than when 205 millimolar NaCl was added. These results are consistent with proline acting as a compatible cytoplasmic solute, balancing an accumulation of salts outside of the cytoplasm.

In contrast to the proline levels in salt-shocked leaves, the concentrations in wilted leaves decreased to near control levels within 24 hours of relief of stress.

  相似文献   

19.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

20.
The subcellular location of NADP+-isocitrate dehydrogenase was investigated by preparing protoplasts from leaves of pea seedlings. Washed protoplasts were gently lysed and the whole lysate separated on sucrose gradients by a rate-zonal centrifugation. Organelles were located by marker enzymes and chlorophyll analysis. Most of the NADP+-isocitrate dehydrogenase was in the soluble fraction. About 10% of the NADP+-isocitrate dehydrogenase was present in the chloroplasts as a partially latent enzyme. Less than 1% of the activity was found associated with the peroxisome fraction. NADP+-isocitrate dehydrogenase was partially characterized from highly purified chloroplasts isolated from shoot homogenates. The enzyme exhibited apparent Km values of 11 micromolar (NADP+), 35 micromolar (isocitrate), 78 micromolar (Mn2+), 0.3 millimolar (Mg2+) and showed optimum activity at pH 8 to 8.5 with Mn2+ and 8.8 to 9.2 with Mg2+. The NADP+-isocitrate dehydrogenase activity previously claimed in the peroxisomes by other workers is probably due to isolation procedures and/or nonspecific association. The NADP+-isocitrate dehydrogenase activity in the chloroplasts might help supply α-ketoglutarate for glutamate synthase action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号