首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects on isometric tension of three divalent ions that block calcium channels, magnesium, cobalt, and cadmium, were tested in small bundles of rat soleus fibers. Cobalt, at a concentration of 2 or 6 mM, reversibly depressed twitch and tetanic tension and the depression was much greater in solutions containing no added calcium ions. Magnesium caused much less depression of tension than cobalt. The depression of tension was not accompanied by membrane depolarization or a reduction in the amplitude of action potentials. A reduction caused by 6 mM cobalt in the amplitude of 40 or 80 mM potassium contractures was not accompanied by a comparable reduction in tension during 200 mM potassium contractures, and could be explained by a shift in the potassium contracture tension-voltage curve to more positive potentials (by +7 mV on average). Similar effects were not seen with 2 or 6 mM magnesium. At a concentration of 20 mM, both cobalt and magnesium depressed twitch and tetanic tension, cobalt having greater effect than magnesium. Both ions shifted the potassium contracture tension-voltage curve to the right by +5 to +10 mV, caused a small depression of maximum tension, and slowed the time course of potassium contractures. Cadmium (3 mM) depressed twitch, tetanic, and potassium contracture tension by more than 6 mM cobalt, but experiments were complicated by the gradual appearance of large contractures that became even larger, and sometimes oscillatory, when the solution containing cadmium was washed out. It was concluded that divalent cations affect both activation and inactivation of tension in a manner that cannot be completely explained by a change in surface charge.  相似文献   

2.
The slow-twitch soleus muscle (SOL) exhibits decreased twitch tension (cold depression) in response to a decreased temperature, whereas the fast-twitch extensor digitorum longus (EDL) muscle shows enhanced twitch tension (cold potentiation). On the other hand, the slow-twitch SOL muscle is more sensitive to twitch potentiation and contractures evoked by caffeine than the fast-twitch EDL muscle. In order to reveal the effects of these counteracting conditions (temperature and caffeine), we have studied the combined effects of temperature changes on the potentiation effects of caffeine in modulating muscle contractions and contractures in both muscles. Isolated muscles, bathed in a Tyrode solution containing 0.1-60 mM caffeine, were stimulated directly and isometric single twitches, fused tetanic contractions and contractures were recorded at 35 degrees C and 20 degrees C. Our results showed that twitches and tetani of both SOL and EDL were potentiated and prolonged in the presence of 0.3-10 mM caffeine. Despite the cold depression, the extent of potentiation of the twitch tension by caffeine in the SOL muscle at 20 degrees C was by 10-15 % higher than that at 35 degrees C, while no significant difference was noted in the EDL muscle between both temperatures. Since the increase of twitch tension was significantly higher than potentiation of tetani in both muscles, the twitch-tetanus ratio was enhanced. Higher concentrations of caffeine induced contractures in both muscles; the contracture threshold was, however, lower in the SOL than in the EDL muscle at both temperatures. Furthermore, the maximal tension was achieved at lower caffeine concentrations in the SOL muscle at both 35 degrees C and 20 degrees C compared to the EDL muscle. These effects of caffeine were rapidly and completely reversed in both muscles when the test solution was replaced by the Tyrode solution. The results have indicated that the potentiation effect of caffeine is both time- and temperature-dependent process that is more pronounced in the slow-twitch SOL than in the fast-twitch EDL muscles.  相似文献   

3.
1. The effects of ATP in the presence of theophylline and imidazole were investigated on the twitch tension of a partially magnesium blocked rat phrenic nerve-diaphragm preparation. Both theophylline and imidazole facilitate the neuromuscular transmission and prevent the effects of ATP. 2. The effects of adenosine in solutions with low calcium concentrations in the frog-sartorius and in solutions with very low calcium concentrations in the rat-diaphragm were studied on the miniature end-plate potentials. Adenosine caused a similar reduction of the frequency of the miniature end-plate potentials in both low and very low calcium concentrations. 3. The results are discussed in relation to the cyclic AMP and calcium hypothesis.  相似文献   

4.
The effects of acid--base alterations produced by changing bicarbonate (metabolic type), carbon dioxide tension (respiratory type), or both bicarbonate and carbon dioxide tension (compensated type) on skeletal muscle twitch tension, intracellular pH, and intracellular potassium were studied in vitro. Hemidiaphragm muscles from normal rats and rats fed a potassium-deficient diet were used. Decreasing the extracellular pH by decreasing bicarbonate or increasing CO2 in the bathing fluid produced a decrease in intracellular pH, intracellular K+, and muscle twitch tension. However, at a constant extracellular pH, an increase in CO2 (compensated by an increase in bicarbonate) produced an increase in intracellular K+ and twitch tension in spite of a decrease in intracellular pH. The effect on twitch tension of the hemidiaphragms showed a rapid onset, was reversible, persisted until the buffer composition was changed, and was independent of synaptic transmission. It is concluded that the twitch tension of the skeletal muscle decrease with a decrease in intracellular K+. The muscle tension also decreases with an increase in the ratio of intracellular and extracellular H+ concentration. However, there is no consistent relationship between muscle tension and extracellular or intracellular pH. The muscle tension of the diaphragms taken from K+-deficient rats is more sensitive to variations in CO2, PH, and bicarbonate concentration of the medium than that of the control rat diaphragms.  相似文献   

5.
The relation between sarcomere length, tension and time course of tension development in twitch and tetanic contractions at 20 degrees C was determined for isolated fibres from the semitendinosus muscle of the frog (Rana esculenta). In twenty fibres at about 2.15 micron sarcomere length, the peak twitch tension, the maximum tetanic tension and the twitch/tetanus ratio ranged, respectively, from 0.22 to 1.6 kg/cm2, from 2.13 o 3.96 kg/cm2 an from 0.07 to 0.53. The peak twitch tension was found to be: i) directly correlated with the twitch/tetanus ratio and the time to the peak of the first derivative of the twitch tension, ii) inversely correlated with the time to the peak of the first derivative of tetanic tension. No significant correlation was found between the maximal tetanic tension and the peak twitch tension or the twitch/tetanus ratio. Peak twitch tension and twitch/tetanus ratio were not correlated with the fibre cross-sectional area which ranged from 1.052 to 6,283 micron2. Sarcomere length-tension curves for twitch and tetanic isometric contractions at 20 degrees C were determined in twelve fibres. Increases in sarcomere length from about 2.15 to 2.85 micron produced, depending on the peak twitch tension or the twitch/tetanus ratio at about 2.15 micron, either decrease and no change or increase in peak twitch tension, but constantly enhanced the twitch/tetanus ratio and the degree of this potentiation was inversely correlated with the twitch/tetanus ratio at 2.15 micron. Increase in sarcomere length above 2.15 micron did not alter the course of the early development of twitch and tetanic tensions, reduced considerably the variation in peak twitch tension and twitch/tetanus ratio, without altering that of tetanic tension and swamped the correlation between the peak twitch tension and the time to peak of the differentiated twitch tension. However, the peak twitch tension at about 2.85 micron resulted to be directly correlated with the peak twitch tension at about 2.15 micron and in addition the relative length-dependent change in the time of the peak of the first derivative of the twitch tension resulted to be directly correlated with the relative length-dependent change in the peak twitch tension. It is concluded that both the duration of the active state and the rate factors of activation contribute to the determining of the large variation in peak twitch tension at about 2.15 micron, whereas the length-dependent increase in twitch/tetanus ratio appears to be mainly determined by prolongation of the active state duration.  相似文献   

6.
alpha-Adrenergic agonists have been shown to increase the tension developed by myocardial muscle. However, their effects on the maximum velocity of unloaded muscle shortening (Vmax) have not been rigorously examined. In this study, the contractile effects of the alpha-adrenergic agonist phenylephrine were examined in the presence of propranolol in papillary muscles of two species, the dog and the rabbit. In rabbit papillary muscles studied at physiological calcium concentrations (1.25 mM), phenylephrine increased all indices of contractility (Vmax, tension, and maximum rate of tension developed (dT/dt)) starting at 10(-8) M. The percent increase in Vmax (121 +/- 8%) was less than that of tension (188 +/- 20%, p less than 0.05) and dT/dt (262 +/- 35%, p less than 0.01). These findings occurred at both 29 and 35 degrees C and were inhibited by adding 10(-5) M prazosin. Increasing extracellular calcium concentration from 1.25 to 15 mM caused changes in twitch configuration that were significantly different from those of phenylephrine. Calcium increased all indices of contractility more than did phenylephrine. This was particularly true for dT/dt (502 +/- 82 vs. 262 +/- 35% for phenylephrine, p less than 0.01). Nonetheless, the ratio of increase in tension to increase in Vmax under both experimental conditions was similar (the increase in Vmax was 64% of that of tension with phenylephrine and 69% with increased calcium). At 1.25 mM calcium, the increase in contractility caused by phenylephrine was much smaller in dog myocardium as compared with rabbit myocardium. Rather, the effects of phenylephrine on dog myocardium studied at 1.25 mM calcium resembled that of rabbit myocardium studied at 15 mM calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The effects of dissociation of force-generating cross bridges on intracellular Ca(2+), pCa-force, and pCa-ATPase relationships were investigated in mouse skeletal muscle. Mechanical length perturbations were used to dissociate force-generating cross bridges in either intact or skinned fibers. In intact muscle, an impulse stretch or release, a continuous length vibration, a nonoverlap stretch, or an unloaded shortening during a twitch caused a transient increase in intracellular Ca(2+) compared with that in isometric controls and resulted in deactivation of the muscle. In skinned fibers, sinusoidal length vibrations shifted pCa-force and pCa-actomyosin ATPase rate relationships to higher Ca(2+) concentrations and caused actomyosin ATPase rate to decrease at submaximal Ca(2+) and increase at maximal Ca(2+) activation. These results suggest that dissociation of force-generating cross bridges during a twitch causes the off rate of Ca(2+) from troponin C to increase (a decrease in the Ca(2+) affinity of troponin C), thus decreasing the Ca(2+) sensitivity and resulting in the deactivation of the muscle. The results also suggest that the Fenn effect only exists at maximal but not submaximal force-activating Ca(2+) concentrations.  相似文献   

8.
A myothermal technique was used to measure initial heat and tension independent heat from isometrically contracting papillary muscles taken from the right ventricle of rabbits. Tension independent heat produced by the muscle at Lo was isolated with a 2,3-butanedione monoxime (diacetyl monoxime)--hyperosmotic Krebs solution. The effects of the inotropic drugs isoproterenol (1 X 10(-7) M), UDCG 115 (2 X 10(-4) M), and caffeine (2 X 10(-3) M) on heat and mechanical output were measured. We tested the hypothesis that these drugs alter peak twitch tension by increasing the total amount of Ca2+ cycled during the twitch, assuming that net tension independent heat is proportional to total Ca2+ cycled. The hypothesis was rejected for each drug as the positive inotropic effects of isoproterenol and UDCG 115 on twitch tension were not accompanied by increases in net tension independent heat. Net tension independent heat was actually depressed by UDCG 115. The negative inotropic effect of caffeine on twitch tension was accompanied by an increase in tension independent heat at times between the end of mechanical relaxation and the next stimulus. Possible mechanisms to account for these results are discussed.  相似文献   

9.
The effects of quinidine and lidocaine on frog ventricle were studied by using a single sucrose gap voltage clamp technique. In Ca2+-Ringer, quinidine (80 microM) caused slight prolongation of action potential duration (APD50) and significant inhibition of twitch tension. Lidocaine (40 microM) shortened APD50 without significant effect on twitch tension. In tetrodotoxin (TTX)-treated preparations, quinidine caused significant prolongation of APD50 from 529 +/- 19 msec to 597 +/- 11 msec, (n = 9) and inhibition of twitch tension, but lidocaine did not affect APD50 and twitch tension. Under voltage clamp condition, quinidine reduced peak inward current in the absence of TTX, but enhanced peak inward current in the presence of TTX. The steady state outward current was increased by quinidine. Lidocaine didn't affect peak inward current in the absence or in the presence of TTX. Membrane current through the inward rectifier (IK1) was slightly increased by lidocaine, but significantly inhibited by quinidine. The enhancement of peak inward current by quinidine was retarded or reversed in preparation bathed with Sr2+-Ringer. When Ni2+ was added to a preparation bathed in Ca2+-Ringer, an inhibition of calcium inward current and action potential plateau was observed. The spike amplitude of the action potential was, however, unaffected by Ni2+. In this Ni2+-treated preparation, lidocaine (20 microM) caused significant shortening of APD50 without significant effect on action potential amplitude. The shortening of APD50 was associated with a slight increase of steady state outward current. The increase of steady state outward current by lidocaine was absent in the TTX-treated preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Resting tension and short-range elastic properties of isolated twitch muscle fibers of the frog have been studied while bathed by solutions of different tonicities. Resting tension in isotonic solution at 2.3-µm sarcomere spacing averaged 0.46 mN·mm-2 and was proportional to the fiber cross-section area. Hypertonic solutions, containing 0.1–0.5 mM tetracaine to block contracture tension, caused a small sustained tension increase, which was proportional to the fiber cross-section area and which reached 0.9 mN·mm-2 at two times normal tonicity (2T). Further increases in tonicity caused little increase in tension. Hypotonic solutions decreased tension. Thus, tension at 2.3 µm is a continuous, direct function of tonicity. The dependence of tension on tonicity lessened at greater sarcomere lengths. At 3.2 µm either a very small rise or, in some fibers, a fall in tension resulted from an increase in tonicity. Hypertonic solutions also decreased the tension of extended sarcolemma preparations. In constant-speed stretch experiments the elastic modulus, calculated from the initial part of the stretch response, rose steeply with tonicity over the whole range investigated (1–2.5T). The results show that tension and stiffness of the short-range elastic component do not increase in parallel in hypertonic solutions.  相似文献   

11.
The effects of 50 microM lanthanum (La3+) on the contractile force, rate and coronary flow of rat hearts perfused with solutions containing 2.5, 5, 7.5 mM calcium (Ca2+) have been investigated. La3+ produced a rapid and marked decrease in contractile force within 1-3 min ("early La(3+)-effect"). The inhibition of contractility by La3+ was reduced progressively when the Ca2+ ion concentration in the perfusion fluid was raised from 2.5 to 7.5 mM. However, after 10-80 min of La3+ perfusion the contractile force was increased significantly ("late La(3+)-effect"). Elevation of Ca2+ during exposure to La3+ increased its effect. During the late La(3+)-effect, a marked decrease in heart rate and a significant increase in time to reach peak tension, time for half relaxation and twitch duration was observed. High concentrations of perfusate Ca2+ decreased the chronotropic response to La3+, in contrast, elevated Ca2+ potentiated La(3+)-induced increase in time to reach peak tension, time for half relaxation and twitch duration. La3+ produced a significant decrease in coronary flow. High Ca2+ augmented the decrease coronary flow. The findings indicate that La3+ may produce marked effects on myocardial function. High extracellular Ca2+ reduces the La(3+)-induced initial decrease in force of contraction, but potentiates the late increase in contractile force by La3+. Elevated external Ca2+ also increases the effects of La3+ on twitch parameters, heart rate and coronary flow.  相似文献   

12.
L Kragie 《Life sciences》1992,51(9):PL83-PL88
Previously, we reported potent inhibition of triiodo-L-thyronine (T3) cellular uptake into a human liver cell line (HepG2) by central and peripheral receptor specific benzodiazepine (BZ) compounds and our working hypothesis of BZ's as direct competitors for the iodothyronine transporter, displacing T3 but not acting as a substrate for transport. In this report, we list other reported uptake inhibitors and compare them to 23 benzodiazepine receptor ligands, in their potency to inhibit cellular uptake of T3. The most potent inhibitors are restricted to the benzodiazepine class. From the BZ structure-activity relationship (SAR) for inhibition, we see that the nonfused phenyl ring may be essential for activity and the strongest relationship is seen with substitution at R2' where Cl greater than F greater than H. Substitution at R4' and hydroxyl substitution at R3 enhances potency as will alkyl groups at R1 or on the imidazole group in the 1,2-annelated series. With R7 substitution, Cl is preferred over NO2 but not necessarily H when R4' = Cl; this may reflect a slightly different orientation of the molecule with large aliphatic R1 groups and/or R4' substitution. The carbonyl at R2 in the 1,4 benzodiazepine series, enhances their potency. The resultant structure-activity relationship highlights the importance of the halogen-substituted nonfused phenyl ring and seems unique relative to other described benzodiazepine sites and/or effects.  相似文献   

13.
In isolated, aequorin-injected ferret cardiac muscle we measured the apparent myofilament Ca2+ sensitivity and its relationship to twitch relaxation time in the presence of autonomic perturbations. The Ca2+-tension relation was determined from the peak aequorin luminescence and peak twitch tension measured in muscles across a broad range of bathing [Ca2+] in the presence and absence of acetylcholine (ACh) (1 microM) or isoproterenol (ISN) (1 microM), or both drugs. ACh shifted the relationship of peak tension to (peak) aequorin light leftward, which suggests an increase in myofilament Ca2+ sensitivity, but it did not alter relaxation, which was measured as the time for peak tension to decay by 50% (t 1/2 R). ISN produced its previously documented effects, i.e., a rightward shift of the relationship of peak tension to peak aequorin light and a decrease in t1/2R. ACh abolished the ISN effect on the peak tension-aequorin light relationship but did not reverse the effect of ISN to decrease t1/2R. The effects of ACh and ISN of modulating the apparent myofilament Ca2+ sensitivity in intact muscles, corroborate findings of previous studies in isolated myofibrillar preparations. However, these perturbations of myofilament Ca2+ sensitivity in the intact muscle do not relate to twitch relaxation, measured as t1/2R, since (a) ACh affects the former but not the later and (b) the effect of ISN on the Ca2+-tension relationship is abolished by ACh, while the relaxant effect persists.  相似文献   

14.
M C Tsai  M L Chen 《Life sciences》1987,40(23):2229-2236
The effects of phencyclidine(PCP) on the post-tetanic potentiation(PTP) of twitch tension were studied on the isolated mouse phrenic nerve diaphragm preparation. Phencyclidine increased directly elicited twitch tension while it decreased post-tetanic potentiation of the indirectly elicited twitch tension. The maximal depression effect of the PTP was found after higher frequencies and longer durations of stimulation. After repetitive stimulation, the amplitude of endplate potential was potentiated. Phencyclidine decreased the post-tetanic potentiation of the amplitude of endplate potential while the quantal content of the endplate potential was not affected. 4-Aminopyridine increased both directly and indirectly elicited twitch tension while it did not inhibit the post-tetanic potentiation of the twitch tension. It is concluded that phencyclidine suppressed the post-tetanic potentiation of the indirectly elicited twitch tension. The depressant effect may be mainly due to its effect on the acetylcholine receptor-ionic channel complex of the motor endplate.  相似文献   

15.
1. Spontaneously beating atria from frogs (R. pipiens) and eels (A. anguilla) were compressed hydraulically to 10 MPa. Effects on beating frequency and twitch tension were studied. 2. At low temperatures (8-10 degrees C) compression to 10 MPa caused a slowing of the beat frequency. No effects were noted at higher temperatures (16-24 degrees C). Twitch tension was decreased by pressure at low temperatures and increased at high temperatures. 3. Differences were noted between preparations from cold and warm acclimatized frogs, and from silver and yellow eels, respectively. 4. The effect of temperature acclimatization on pressure and temperature sensitivity is discussed in relation to data on cardiac phospholipid fatty acid composition.  相似文献   

16.
The effects of pure synthetic polychlorinated biphenyl (PCB) congeners on the induction of cytochrome P450 and associated activities were examined in cultured chick embryo hepatocytes. Dose-response effects for the induction of total cytochrome P450 ethoxyresorufin-O-deethylase (EROD) activity, and benzphetamine demethylase (BPDM) activity were studied using 10 selected tetra- to hexachlorinated PCB congeners. These studies revealed that PCBs caused effects in the chick hepatocyte culture different from previously observed effects in rat liver. Based on their effects in chick hepatocytes, the PCBs could be categorized into two groups. The first group (consisting of 3,3',4,4'-PCB, 3,3',4,4',5-PCB, 3,3',4,4',5,5'-PCB, 2',3,3',4,5-PCB, 2,3,3',4,4',5'-PCB, and 2,3,4,4',5-PCB) induced total cytochrome P450 2.4- to 2.9-fold and EROD activity from 1-2 pmol/min/mg protein to 162-247. There was marked variation in potency, but all these congeners had a maximal inducing dose above which cytochrome P450 concentrations and EROD activities declined. BPDM activities were increased only slightly (1.2- to 1.6-fold) at the maximal cytochrome P450 inducing dose. The second group of congeners (consisting of 2,2',4,5,5'-PCB. 2,2',4,4',5,5'-PCB, and 2,2',3,4,4',6-PCB) induced total cytochrome P450 concentrations 4.0-fold and BPDM activities 2.2- to 2.6-fold with greatest activity occurring at the highest doses which could be added (10-50 microM). However, EROD activities were also increased by these congeners to 60-112 pmol/min/mg protein with declining activities seen at the highest PCB doses (i.e., resembling EROD induction patterns of the first group). The EROD induction patterns with these latter PCB congeners are noteworthy since these PCBs do not induce EROD activity in the rat. For both groups of PCB congeners, EROD induction was associated with increased accumulation of uroporphyrin in cultures exposed to exogenous 5-aminolevulinate. Studies investigating the reason for the depression of cytochrome P450 concentrations and/or EROD activities by high doses of the PCBs revealed that with the first group there was slightly decreased total protein synthesis, decreased total cell heme concentrations, and decreased accumulation of radiolabeled heme synthesized from 5-[14C]aminolevulinate. These changes might represent nonspecific toxic effects of the first group of PCBs. However, since these changes were not seen with the second group of PCBs, it is unlikely that either inhibition of heme synthesis or toxicity cause the depression of EROD activity with high PCB doses.  相似文献   

17.
Previous studies have shown that acidosis increases myoplasmic [Ca2+] (Cai). We have investigated whether this facilitates spontaneous sarcoplasmic reticulum (SR) Ca2+ release and its functional sequelae. In unstimulated rat papillary muscles, exposure to an acid solution (produced by increasing the [CO2] of the perfusate from 5 to 20%) caused a rapid increase in the mean tissue Cai, as measured by the photoprotein aequorin. This was paralleled by an increase in spontaneous microscopic tissue motion caused by localized Ca2+ myofilament interactions, as monitored in fluctuations in the intensity of laser light scattered by the muscle. In regularly stimulated muscles, acidosis increased the size of the Ca2+ transient associated with each contraction and caused the appearance of Cai oscillations in the diastolic period. In unstimulated single myocytes, acidosis depolarized the resting membrane potential by approximately 5 mV and enhanced the frequency of spontaneous contractile waves. The small sarcolemmal depolarization associated with each contractile wave increased and occasionally initiated spontaneous action potentials. In regularly stimulated myocytes, acidosis caused de novo spontaneous contractile waves between twitches; these waves were associated with a decrease in the amplitude of the subsequent stimulated twitch. Ryanodine (2 microM) abolished all evidence of spontaneous Ca2+ release during acidosis, markedly reduced the acidosis-induced increase in aequorin light, and reduced resting tension. We conclude that acidosis increases the likelihood for the occurrence of spontaneous SR Ca2+ release, which can cause spontaneous action potentials, increase resting tension, and negatively affect twitch tension.  相似文献   

18.
《Life sciences》1990,47(17):PL83-PL89
The effects of 3 endothelins (ETs) on sympathetic nerve-mediated responses were investigated in the mouse isolated vas deferens. ET-1, ET-2 and, to a lesser extent, ET-3 (0.3–30 nM) caused marked and sustained potentiation of responses to field stimulation at 0.1 Hz, but had little effects, if any, on baseline tension. Incubation with nicardipine (30 nM) strongly inhibited the development of twitch potentiation by the ETs. Twitches potentiated beforehand by ET-1 (10 nM) displayed marked resistance to inhibition by nicardipine, so that 10 μM of nicardipine only reversed part of the effect of ET-1. ET-1 also enhanced both components of the response to high frequency field stimulation (2 to 16 Hz) and contractions induced by submaximal concentrations of noradrenaline, ATP or KCl. All effects of ET-1 were mimicked by Bay K 8644, an activator of L-type Ca++ channels. It is concluded that ETs increase the efficacy of sympathetic neurotransmission in the mouse vas deferens by, at least in part, a postjunctional mechanism which involves activation of L-type Ca++ channels.  相似文献   

19.
In isolated strips of rat diaphragm denervated 9-21 days prior to experimentation, spontaneous action potentials were recorded extracellularly and twitch and resting tension were measured. The sea anemone toxin ATX II enhances the occurrence of spontaneous action potentials, increases resting tension and depresses twitch tension. These effects are essentially irreversible. In low sodium solution substituted with sucrose the effects of ATX II are attenuated, however, they fully develop upon return to normal sodium solution with a marked transient increase in the incidence of spontaneous action potentials and in resting tension. ATX II remains uneffective after pretreatment with tetrodotoxin. Reelevation of the extracellular sodium concentration after exposure to low sodium solution per se causes a marked increase in occurrence of fibrillation potentials, however the transient increase in resting tension was much smaller than in the presence of ATX II. Substitution of chloride with the impermeable anion methylsulphate enhances spontaneous activity and resting tension without an effect on twitch tension. Addition of ATX II elevates resting tension although the concomitant further increase in incidence of spontaneous action potentials is small. It is concluded that the increase in resting tension reflects a summation of the fibrillatory activity, but fibrillations become more effective when the preparations are exposed to ATX II. This finding points at the possible r?le of sodium ions in excitation contraction coupling of denervated skeletal muscle.  相似文献   

20.
The stiffness of single fibers from frog skeletal muscle was measured by the application of small 2-kHz sinusoidal length oscillations during twitch and tetanic contractions at a range of initial sarcomere lengths. The earliest mechanical signs of activation were a fall in tension (latency relaxation) and a rise in stiffness. The earliest stiffness increase and the earliest tension fall occurred simultaneously at all sarcomere lengths. This suggests a cross-bridge origin for the latency relaxation. The lead of stiffness over tension seen during the rise of tension was substantially established during the latent period. Reducing the size of the twitch by reducing calcium release with D-600 (methoxyverapamil) reduced the latency relaxation and the stiffness development during latency much less than it reduced the twitch tension. For very small twitches the peak of the stiffness response occurred during the latent period and the times of onset of both latency relaxation and stiffness rise were delayed, but remained coincident. This suggests a strong connection between the latency relaxation and the rise of stiffness during the latent period, whereas the connection between these events and positive tension generation appears to be less strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号