首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of ABA in the induction of freezing tolerance was investigatedin two wheat (T. aestivum L.) cultivars, Glenlea (spring var)and Fredrick (winter var). Exogenous application of ABA (5x10–5M for 5 days at 24°C) increased the freezing tolerance ofintact plants by only 3°C (LT50) in both cultivars. Maximalfreezing tolerance (LT50 of –9°C for Glenlea and –17°Cfor Fredrick) could only be obtained with a low temperaturetreatment (6/2°C; day/night) for 40 days. These resultsshow that exogenously applied ABA cannot substitute for lowtemperature requirementto induce freezing tolerance in intactwheat plants. Furthermore, there was no increase in the endogenousABA level of wheat plants during low temperature acclimation,suggesting the absence of an essential role for ABA in the developmentof freezing tolerance in intact plants. On the other hand, ABAapplication (5x10–5 M for 5 days at 24°C) to embryogenicwheat calli resulted in an increase of freezing tolerance similarto that achieved by low temperature. However, as in intact plants,there was no increase in the endogenous ABA level during lowtemperature acclimation of calli. These results indicate thatthe induction of freezing tolerance by low temperature is notassociated with an increase in ABA content. Using an antibodyspecific to a protein family associated with the developmentof freezing tolerance, we demonstrated that the induction offreezing tolerance by ABA in embryogenic wheat calli was correlatedwith the accumulation of a new 32 kDa protein. This proteinis specifically induced by ABA but shares a common antigenicitywith those induced by low temperature. These results suggestthat ABA induces freezing tolerance in wheat calli via a regulatorymechanism different from that of low temperature. (Received June 15, 1993; Accepted September 16, 1993)  相似文献   

2.
We studied the mechanism of cold acclimation of Jerusalem artichoke{Helianthus tuberosus L.) tubers with special reference to therole of the cell wall. During the cold-acclimation process fromSeptember to January, the freezing tolerance of tubers increasedfrom – 2.8°C to –8.4°C (LT50). By contrast,the isolated protoplasts con- stitutively showed a consistenthigh level of freezing toler ance (LT50; below – 25°C)throughout the period. In tuber tissues, freezing injury waseffectively protected by the ex ternal addition of isotonicsolutions. Cryomicroscopic ob servations revealed that tissuecells mounted in isotonic so lutions plasmolyzed upon freezing;tissue cells mounted in water collapsed with a tight attachmentof plasma mem brane to the cell wall. Upon freezing of intacttissues in water to temperatures below the critical range, thecyto plasm was irreversibly acidified as revealed by a fluorescence pH-ratiometry, suggesting that occurrence of detri mentalcellular events leading to permanent cell injury. The freeze-inducedacidification of cytoplasm was also effective ly prevented bythe external addition of isotonic solutions. These results suggestthat the tight attachment of the plas ma membrane to the cellwall during freezing may have a harmful effect on cells, inparticular on the plasma mem brane, possibly due to mechanicalor some sort of chemi cal/physico-chemical interaction withthe cell wall. 1Contribution no. 3946 from The Institute of Low TemperatureScience, Hokkaido University. This research was supported inpart by the grant from Japan Society for the Promotion of Science(JSPS-RFTF 96L00602) 2Present address: Tohoku National Agricultural Experiment Station, Morioka, Iwate, 020-01 Japan  相似文献   

3.
Variable fluorescence (Fv) of intact leaves was measured whenthe temperature was lowered at a rate of 1–2?C per mn,from 20?C to –20?C. The quantum flux density of the excitinglight was 1–2 µE m–2 sec–1 in orderto sensitize F only at 20?C. The fluorescence yield decreasedrapidly at the freezing point of the leaf and upon further coolingthe fluorescence yield increased again. Fm was obtained a fewdegrees below the freezing point. Repeated freeze-thaw cycles caused successively increased damageto the thylakoid membranes on either the oxidizing or the reducingside of photosystem II. An eventual loss of Fv over Fo was typicalfor damage on the water splitting side of photosystem II, whereasdamage after the primary electron acceptor Q of photosystemII was characterized by an invariable fluorescence yield atFm over the temperature range examined. (Received January 18, 1982; Accepted June 12, 1982)  相似文献   

4.
5.
Two contrasting cultivars of Lolium perenne were exposed toa range of daily radiation integrals during hardening at 2°Cfor 15 d. The maximum induced freezing tolerance measured asLT50 (temperature for 50 % kill) differed markedly between thecultivars. The observed LT50 values were unaffected by changesin the radiation integral above 10 mol m–2 d–1,whereas accumulation of water-soluble carbohydrate showed astrong positive correlation with the radiation integral overthe entire range of the experiment. The correlation betweenLT50 and soluble carbohydrate content at the end of the hardeningperiod was poor and showed no obvious connection with genotype.Fructan polymers and sucrose were the major components of thesoluble carbohydrates in both cultivars. The depression of freezingpoint attributable to the accumulation of soluble, osmoticallyactive carbohydrate was not sufficient to account for the observedchanges in LT50 in the hardy genotype. These results are discussedin relation to the interactions between growth, photosynthesisand assimilate partitioning during hardening. Lolium perenne, hardening, freezing tolerance, irradiance, carbohydrate, fructan  相似文献   

6.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

7.
A 2-gram fresh weight inoculum of bromegrass (Bromus inermis Leyss. culture BG970) cell suspension culture treated with 7.5 × 10−5 molar abscisic acid (ABA) for 7 days at 25°C survived slow cooling to −60°C. Over 80% of the cells in ABA treated cultures survived immersion in liquid N2 after slow cooling to −40 or −60°C. In contrast, a 6-gram fresh weight inoculum only attained a hardiness level of −28°C after 5 days of ABA treatment. Ethanol (2 × 10−2 molar) added to the culture medium at the time of ABA addition, inhibited the freezing tolerance of bromegrass cells by 25°C. A 6-gram inoculum of both control and ABA treated bromegrass cells altered the pH of the medium more than a 2-gram inoculum. ABA inhibited the increase in fresh weight of bromegrass by 20% after 4 days. Both control and ABA (10−4 molar) treated alfalfa cells (Medicago sativa L.) grown at 25°C hardened from an initial LT50 of −5°C to an LT50 of −23°C by the third to fifth day after subculture. Thereafter, the cells dehardened but the ABA treated cells did not deharden to the same level as the control cells. ABA inhibited the increase in fresh weight of alfalfa by 50% after 5 days.  相似文献   

8.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

9.
Measured by GC—MS2—SIR3, endogenous ABA4 in embryonicaxes of seeds of Malus pumila L. cv. Golden Delicious decreased8-fold and cotyledon ABA by only 60%, during 10–50 d ofstratification at 5 ?C, after ABA leaching during an initial24 h soaking. During stratification, the percentage germinationof embryos transferred to 17?C showed a significant linear dependenceon loge of ABA levels in the axes at transfer. Between 50 and70 d, ABA levels increased markedly in axes and testa both ofstratified seeds and seeds allowed to re-dry at 17 ?C afterinitial soaking. The ability of fully stratified axes with elevatedendogenous ABA to germinate indicated that stratification haddecreased their ABA sensitivity. Changes in cotyledon ABA couldnot account for the promotory effect of cotyledons on germinationduring the first 30 d of stratification. Loss of testa inhibitionof germination during stratification was not linked with changesin testa ABA. Stratification markedly increased the sequestrationin the axes of exogenous ABA supplied via the cotyledons. Changesboth in axis ABA levels and sensitivity were thus correlatedwith dormancy release, but subject to modifying control by thecotyledons and testa not involving ABA. Rehydration of driedseeds affected axis ABA later during storage via mechanismsunconnected with dormancy. Key words: ABA, seed dormancy, stratification  相似文献   

10.
In the chilling sensitive (C.S.) species Phaseolus vulgarisit was found that at 22 ?C ABA induced stomatal closure butthis effect was dependent on the presence of CO2. In the absenceof CO2 the effect of ABA was completely lost. In contrast toABA, the effect of IAA at 22 ?C was to increase stomatal openingas the IAA concentration increased from 10–2 to 10 molm–3, and this effect was dependent upon the presence ofCO2. However, at 5 ?C the action of ABA was reversed and itwas found to induce stomatal opening when fed via the transpirationstream in excised leaves. Similarly, the CO2 response characteristicswere reversed at low temperatures as removal of CO2 from theatmosphere caused stomatal closure. However, the effect of IAAat 5 ?C in the presence of CO2 and with or without ABA was toincrease stomatal aperture with increasing IAA concentration.Significantly, ABA was found to have no effect upon aperturein the presence of CO2 when IAA was added. The interactive effectsof ABA, IAA, CO2 and low temperature are discussed in relationto a model proposed by the authors. Key words: IAA, ABA, CO2, Stomata  相似文献   

11.
Epidermal strips from either well-watered or water-stressedplants of Commelina communis L. were subjected to a range ofABA concentrations (10–6–10–3 mol m–3)in the presence (330 parts 10–6 in air) or virtual absence(3 parts 10–6 in air) of CO2. The stomatal response toCO2 was greater in epidermis from water-stressed plants, althoughthere was a distinct CO2 response in epidermis from well-wateredplants. Additions of ABA via the incubation medium had littleeffect on the relative CO2 response. Stomata responded to ABAboth in the presence and virtual absence of CO2, but the relativeresponse to ABA was greatest in the high CO2 treatment. Whenwell-watered plants were sprayed with a 10–1 mol m–3ABA solution 1 d prior to use, the stomatal response of detachedepidermis to both CO2 and ABA was very similar to that of epidermisdetached from water-stressed leaves. It is hypothesized thata prolonged exposure to ABA is necessary before there is anymodification of the CO2 response of stomata.  相似文献   

12.
Acclimation of NO3 transport fluxes (influx, efflux)in roots of oilseed rape (Brassica napus L. cv. Bien venu) andtheir sensitivity to growth at low root temperature was studiedin relation to external NO3 supply, defined by constantconcentrations ranging from sub- to supra-optimal with respectto plant growth rate. Plants were grown from seed in flowingnutrient solutions containing 250 mmol m–3 NO3at 17°C for 20d, and solution temperature in half the cultureunits was then lowered decrementally over 3 d to 7°C. Threedays later plants were supplied with NO3 at 1, 10, 100or 1000 mmol m–3 maintained for 18 d. Dry matter productionwas decreased more by low root zone temperature than low [NO3]e. Root specific growth rates were inversely related to [NO3]eand shoot:root ratios increased with time at [NO3]e between10–1000 mmol m–3. Net uptake of NO3 at 17°Cwas twice that at 7°C, and at both temperatures it doubledwith increasing [NO3]e between 1–10 mmol m–3with further small increases at higher [NO3]e. Mean unitabsorption rates of NO3 between 0–6 d and 6–14d were linearly related (r2 of 0.79–0.99) to log10[NO].Steady-state Q10 (7–17°C) for uptake between 0–6d were 0.91, 1.62, 1.27, and 1.10, respectively, at [NO3]eof 1, 10, 100, and 1000 mmol m–3, compared with correspondingvalues of 0.98, 1.38, 1.68, and 1.89 between 6–14 d. Thedata indicated that net uptake rates at 7 and 17°C divergedover time at high [NO3]e. Short-term uptake rates from1 mol m–3 NO3 measured at 17°C were higherin plants grown with roots at 7°C than at 17°C; for7°C plants there was a strong inverse linear relationship(r2=0.94) between uptake rate and treatment log10 [NO3]ewhilst rates in 17°C plants were independent of prior [NO3]e. Rates of NO3 influx and efflux under different steady-stateconditions of NO3 supply and root temperature were calculatedfrom dilution of 15N added to culture solutions. Efflux wassubstantial relative to net uptake in all treatments, and wasinversely related to [NO3]e at 17°C but not at 7°C.Ratios of influx: efflux ranged from 1.6–2.9 at 17°Cand 1.3–1.8 at 7°C, indicating the proportionatelygreater impact of efflux at low root temperature. Ratios ofefflux: net uptake were 0.53–1.56 at 17°C and 1.21–3.58at 7°C. The apparent sensitivities of influx and effluxto steady-state root temperature varied with [NO3]e.Both fluxes were higher at 17°C than 7°C in the presenceof 100–1000 mmol m–3 NO3 but the trend wasreversed at 1–10 mmol m–3 NO. Concentrations oftotal N measured in xylem exudate were at least 2-fold higherat 7°C compared with 17°C, attributable mainly to higherconcentrations of NO3 glutamine and proline. The resultsare discussed in terms of acclimatory and other responses shownby the NO3 transport system under conditions of limitingNO3 supply and low root temperature. Key words: Brassica napus, nitrate supply, efflux, influx, root temperature, xylem exudate  相似文献   

13.
The effects of culture conditions on abscisic acid (ABA)-inducedfreezing tolerance were determined in smooth bromegrass Bromusinermis Leyss cv. Manchar) cell suspension cultures. Bromegrasscultures initiated with 2 g fr wt of cells achieved maximumfreezing tolerances (greater than –32?C) at 25 to 30?Cin the presence of 75 to 100 µM ABA. High levels of freezingtolerance induced by ABA were correlated with high growth ratesat 25 and 30?C. In control cells, incubation at 10?C inducedoptimum levels of hardiness with minimal growth. Prolonged exposure(6 weeks) of cells to 3?C, with or without ABA, increased freezingtolerance only by several degrees. Exogenous ABA concentrationsgreater than 100 µM were not inhibitory to growth. Repeatedexposure to ABA, however, retarded growth and made the cellstolerant to temperatures below –40?C. Removal of ABA fromthe medium resulted in dehardening of the cells both at 25 and3?C. Nitrogen had a marginal effect on ABA-induced hardeningat 25?C, but inhibited age-dependent hardening of control cellcultures. Light had no effect on the freezing tolerance of culturedcells. Addition of 10% sucrose, 30 min prior to freezing, tobromegrass cells treated with ABA for 4 days increased freezingtolerance more than 15?C. These observations are discussed inrelation to the contrasting behaviour of the low temperatureand photoperiod dependent cold acclimation of plants (Received July 14, 1989; Accepted October 23, 1989)  相似文献   

14.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

15.
Wheat (Triticum aestivum L.) embryos form in dynamically-regulatedovular environments. Our objectives were to improve developmentof cultured immature wheat embryos by simulating, in vitro,abscisic acid (ABA) levels and O2 tensions as found in wheatovules during zygotic embryogenesis. We characterized from intactwheat kernels embryo respiration, embryo morphology and embryoand endosperm + ABA levels at 13, 19 and 25 d post-anthesis(DPA). Young (13 DPA) embryos were then excised and culturedin vitro, where they were exposed to 0·2 or 2·Ommol m–3 ±ABA and 2.·1, 2·5 or 7·4mol m–3 (6, 7 and 21%, respectively) gaseous O2. At 6and 12 d in culture, + ABA levels, embryo respiration and embryomorphology were characterized by treatment. Thirteen-day-oldembryos from two different plant populations differed by 17-foldin initial ABA content. However, this difference did not affectprecocious germination in vitro, nor did it affect the amountof exogenous ABA required to reduce precocious germination by40%. In this respect, embryos from both populations were equallysensitive to exogenous ABA. Cavity sap O2 levels (2·1to 2·5 mol m–3) were much more effective in preventingprecocious germination of cultured embryos than were cavitysap levels of ABA (0·2 to 2·0 mmol m–3).The combination of physiological levels of both ABA and O2 largelynormalized DW accumulation and embryo morphology without alteringendogenous + ABA levels. Residual respiration of cultured embryoswas higher than that of embryos grown in situ, and was not influencedby the exogenous O2 and ABA treatments Key words: Abscisic acid, embryo development, oxygen tensions, respiration, wheat  相似文献   

16.
The freezing tolerance of many plants, such as pea (Pisum sativum),is increased by exposure to low temperature or abscisic acidtreatment, although the physiological basis of this phenomenonis poorly understood. The freezing tolerance of pea shoot tips,root tips, and epicotyl tissue was tested after cold acclimationat 2C, dehydration/rehydration, applications of 10–4M abscisic acid (ABA), and deacclimation at 25C. Tests wereconducted using the cultivar ‘Alaska’, an ABA-deficientmutant ‘wil’, and its ‘wildtype’. Freezinginjury was determined graphically as the temperature that caused50% injury (T50) from electrical conductivity. Endogenous ABAwas measured using an indirect enzyme-linked immunosorbant assay,and novel proteins were detected using 2-dimensional polyacrylamidegel electrophoresis. The maximum decrease in T50 for root tissuewas 1C for all genotypes, regardless of treatment. For ‘Alaska’shoot tips and epicotyl tissue, exogenous ABA increased thefreezing tolerance by –1.5 to –4.0C, while coldtreatment increased the freezing tolerance by –7.5 to–14.8C. Cold treatment increased the freezing toleranceof shoot tips by –9 and –15C for ‘wil’and ‘wild-type’, respectively. Cold acclimationincreased endogenous ABA concentrations in ‘Alaska’shoot tips and epicotyls 3- to 4-fold. Immunogold labeling increasednoticeably in the nucleus and cytoplasm of the epicotyl after7 d at 2C and was greatest after 30 d at the time of maximumfreezing tolerance and soluble ABA concentration. Cold treatmentinduced the production of seven, three, and two proteins inshoot, epicotyl, and root tissue of ‘Alaska’, respectively.In ‘Alaska’ shoot tissue, five out of seven novelproteins accumulated in response to both ABA and cold treatment.However, only a 24 kDa protein was produced in ‘wil’and ‘wild-type’ shoot and epicotyl tissues aftercold treatment. Abscisic acid and cold treatment additivelyincreased the freezing tolerance of pea epicotyl and shoot tissuesthrough apparently independent mechanisms that both resultedin the production of a 24 kDa protein. Key words: Pisum sativum, cold acclimation, immuno-localization  相似文献   

17.
Wheat plants were grown in a controlled environment with daytemperatures of 18 ?C and with 500 µ Einsteins m–28–1 of photosynthetically active radiation for 16 h. Beforeanthesis and 2 to 3 weeks after, rates of net photosynthesiswere measured for leaves in 2 or 21% O2 containing 350 vpm CO2at 13, 18, 23, and 28 ?C and with 500 µEinsteins m–2s–1 of photosynthetically active radiation. Also, underthe same conditions of light intensity and temperature, therates of efflux of CO2 into CO2-free air were measured and,for mature flag leaves 3 to 4 weeks after anthesis, gross andnet photosynthesis from air containing 320 vpm 14CO2 of specificactivity 39?7 nCi µmol–1. When the O2 concentration was decreased from 21 to 2% (v/v)the rate of net photosynthesis increased by 32 per cent at thelowest temperature and 54 per cent at the highest temperature.Efflux of CO2 into CO2-free air ranged from 38 per cent of netphotosynthesis at 13 ?C to 86 per cent at 28 ?C. Gross photosynthesis,measured by the 14C assimilated during 40 s, was greater thannet photosynthesis by some 10 per cent at 13 ?C and 17 per centat 28 ?C. These data indicate that photorespiration was relativelygreater at higher temperatures.  相似文献   

18.
Astle, M. and Rubery, P. 1987. Carrier-mediated ABA uptake bysuspension-cultured Phaseolus coccineus L. cells: Stereospecificityand inhibition by ionones and ABA esters.—J. exp. Bot.38: 150–163. The substrate for the abscisic acid (ABA) carrier in Phaseoluscoccineus L. suspension-cultured cells is shown to be the (S)ABAenantiomer, Km = 1?0 mmol m–3. The methyl (MeABA) andphenyl (PheABA) esters of ABA inhibit carrier-mediated uptakeof ABA with half-maximal inhibition achieved at about 7?0 mmolm–3 and 10 mmol m–3 respectively: with (S)MeABAthis value is decreased to about 2?0 mmol m–3. There isno demethylation of radioactive MeABA by the cells during 5min incubations. Although MeABA reversibly inhibits the ABAcarrier, it is not a transport substrate: association of radioactiveMeABA with living cells is unaffected by non-radioactive MeABAor ABA and, by comparison with frozen-and-thawed cells, it isshown that the radioactivity remains extracellular. It is proposedthat MeABA binds to the carrier to form an abortive complexthat is not translocated. The terpenoid ABA analogue LAB 144143also inhibits carrier-mediated ABA uptake. At concentrationsup to about 20 mmol m–3 - and ß-ionone specificallyinhibit the ABA carrier with the half-maximal effect at about0?6 mmol m–3 ß-ionone. However, at higher iononeconcentrations, the uptake of ABA, indol-3-yl acetic acid andof 5,5-dimethyloxazolidine-2,4-dione (DMO) are all stimulated:this may reflect general permeabilization of the membrane toweak acids by ionone. Key words: Uptake carrier, abscisic acid, methyl and phenyl esters of ABA, ionone, Phaseolus coccineus L. suspension culture  相似文献   

19.
In situ growth and development of Neocalanus flemingeri/plumchrusstage C1–C4 copepodites were estimated by both the artificial-cohortand the single-stage incubation methods in March, April andMay of 2001–2005 at 5–6°C. Results from thesetwo methods were comparable and consistent. In the field, C1–C4stage durations ranged from 7 to >100 days, dependent ontemperature and chlorophyll a (Chl a) concentration. Averagestage durations were 12.4–14.1 days, yielding an averageof 56 days to reach C5, but under optimal conditions stage durationswere closer to 10 days, shortening the time to reach C5 (fromC1) to 46 days. Generally, growth rates decreased with increasingstage, ranging from 0.28 day–1 to close to zero but weretypically between 0.20 and 0.05 day–1, averaging 0.110± 0.006 day–1 (mean ± SE) for single-stageand 0.107 ± 0.005 day–1 (mean ± SE) forartificial-cohort methods. Growth was well described by equationsof Michaelis–Menten form, with maximum growth rates (Gmax)of 0.17–0.18 day–1 and half saturation Chl a concentrations(Kchl) of 0.45–0.46 mg m–3 for combined C1–3,while Gmax dropped to 0.08–0.09 day–1 but Kchl remainedat 0.38–0.93 mg m–3 for C4. In this study, in situgrowth of N. flemingeri/plumchrus was frequently food limitedto some degree, particularly during March. A comparison withglobal models of copepod growth rates suggests that these modelsstill require considerable refinement. We suggest that the artificial-cohortmethod is the most practical approach to generating the multispeciesdata required to address these deficiencies.  相似文献   

20.
Coleman, W. K. 1985. Variations in cold resistance among applecultivars during deacclimation.——J. exp. Bot. 36:1159–1171. One-year-old vegetative twig samples from mature, bearing treesof nine apple cultivars were monitored over two years for theirdormancy intensity and relative cold hardiness levels duringthe winter/spring deacclimation period. The apple cultivarsexhibited a consistent response during the dehardening processwhich included a higher initiation temperature for the low temperatureexotherm (LT2) and the development of an intermediate freezingexotherm (LT1.). Imperial Red Mac/Antonovka was the hardiestcultivar during the two-year period while Imperial Red Mac/M.111was the most tender. Cortland/Beautiful Arcade and Rogers RedMac/M.111 varied considerably in their relative hardiness responsesfrom year to year. Mid-winter hardiness levels were significantlyand positively correlated with dormancy intensity in the ninecultivars. However, this relationship did not exist when thehardiness indices for late winter or early spring were comparedwith dormancy intensity. An intensive correlation and path analysisof the response of four cultivars (Jersey Mac/M.111, Vista Bella/M.111,Spur Mac/M.111 and Rogers Red Mac/M.111) to previous maximum/minimumair temperatures indicated that past maximum temperature primarilyaffected LT2 while past minimum temperature affected LT1. Whenlinear regression equations were fitted to the data, the meanair temperature of 0°C coincided with LT1 values of —18 °C and LT2 values of –36°C to –38°Cfor all four cultivars. Correlation analyses between % moisturecontent and LT1/LT2 for the four cultivars were often positivebut generally non-significant. Injury in living cells slightlypreceded the initiation temperature of LT1 and supports theidea that membrane destabilization may be an important and immediateprecursor to intracellular freezing. Key words: Apple, cold hardiness, deacclimation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号