首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The bacterium Bacillus subtilis undergoes endospore formation in response to starvation. sigma factors play a key role in spatiotemporal regulation of gene expression during development. Activation of sigma factors is coordinated by signal transduction between the forespore and the mother cell. sigma(E) is produced as pro-sigma(E), which is activated in the mother cell by cleavage in response to a signal from the forespore. We report that expression of SpoIIR, a putative signaling protein normally made in the forespore, and SpoIIGA, a putative protease, is necessary and sufficient for accurate, rapid, and abundant processing of pro-sigma(E) to sigma(E) in Escherichia coli. Modeling and mutational analyses provide evidence that SpoIIGA is a novel type of aspartic protease whose C-terminal half forms a dimer similar to the human immunodeficiency virus type 1 protease. Previous studies suggest that the N-terminal half of SpoIIGA is membrane-embedded. We found that SpoIIGA expressed in E. coli is membrane-associated and that after detergent treatment SpoIIGA was self-associated. Also, SpoIIGA interacts with SpoIIR. The results support a model in which SpoIIGA forms inactive dimers or oligomers, and interaction of SpoIIR with the N-terminal domain of SpoIIGA on one side of a membrane causes a conformational change that allows formation of active aspartic protease dimer in the C-terminal domain on the other side of the membrane, where it cleaves pro-sigma(E).  相似文献   

5.
Influence of spo mutations on sigma E synthesis in Bacillus subtilis.   总被引:21,自引:17,他引:4       下载免费PDF全文
Bacillus subtilis mutants blocked at the same stage of development (stage II) as strains with mutations in the structural gene for sigma E (sigE[spoIIGB]) were analyzed immunologically for sigma E and its precursor protein, P31. Mutations at spoIIL, spoIIN, and spoIIJ loci but not at the spoIIM locus significantly reduced P31 formation. Mutations at the spoIIAA, spoIIAC, spoIIEA, spoIIEB, and spoIIEC loci did not affect P31 synthesis but blocked its processing into sigma E. These results demonstrate a requirement for at least eight stage II gene products in the developmental pathway which leads to sigma E and brings to 11 the number of stage II genes (including spoIIGA, spoIIGB, and spoIIF) now known to be needed for sigma E formation.  相似文献   

6.
sigma E and sigma K are sporulation-specific sigma factors of Bacillus subtilis that are synthesized as inactive proproteins. Pro-sigma E and pro-sigma K are activated by the removal of 27 and 20 amino acids, respectively, from their amino termini. To explore the properties of the precursor-specific sequences, we exchanged the coding elements for these domains in the sigma E and sigma K structural genes and determined the properties of the resulting chimeric proteins in B. subtilis. The pro-sigma E-sigma K chimera accumulated and was cleaved into active sigma K, while the pro-sigma K-sigma E fusion protein failed to accumulate and is likely unstable in B. subtilis. A fusion of the sigE "pro" sequence to an unrelated protein (bovine rhodanese) also formed a protein that was cleaved by the pro-sigma E processing apparatus. The data suggest that the sigma E pro sequence contains sufficient information for pro-sigma E processing as well as a unique quality needed for sigma E accumulation.  相似文献   

7.
sigma E, a sporulation-essential sigma factor of Bacillus subtilis, is formed by a developmentally regulated proteolysis which removes 27 to 29 amino acids from the amino terminus of an inactive precursor protein (Pro-sigma E). A mutation which facilitates the conversion of inefficiently processed Pro-sigma E variants into mature sigma E was identified and mapped to spoIIGA. The isolation of such a mutation argues that SpoIIGA is directly involved in the Pro-sigma E processing reaction.  相似文献   

8.
sigma E is a sporulation-specific sigma factor of Bacillus subtilis that is formed from an inactive precursor protein (pro-sigma E) by the removal of 27 to 29 amino acids from the pro-sigma E amino terminus. By using oligonucleotide-directed mutagenesis, sequential deletions were constructed in the precursor-specific region of sigE and analyzed for their effect on the gene product's activity, ability to accumulate, and susceptibility to conversion into mature sigma E. The results demonstrated that the first 17 residues of the pro sequence contribute to silencing the sigma-like activity of pro-sigma E and that the amino acids between positions 12 and 17 are also important for its conversion into sigma E. Deletions that remove 21 or more codons from sigE reduce sigma E activity in cells which carry it, presumably by affecting pro-sigma E stability. A 26-codon deletion results in a gene whose product is not detectable in B. subtilis by either reporter gene activity or Western blot (immunoblot) assay. The primary structure as well as the size of the pro region of sigma E contributes to the protein's stability. The placement of additional amino acids into the pro region reduces the cell's ability to accumulate pro-sigma E. Additional sigE mutations revealed that the amino acids normally found at the putative processing site(s) of pro-sigma E are not essential to the processing reaction; however, a Glu residue upstream of these sites (position 25) was found to be important for processing. These last results suggest that the pro-sigma E processing apparatus does not recognize the actual site within pro-sigma E at which cleavage occurs but rater sequence elements that are upstream of this site.  相似文献   

9.
During formation of spores by Bacillus subtilis the RNA polymerase factor sigma(G) ordinarily becomes active during spore formation exclusively in the prespore upon completion of engulfment of the prespore by the mother cell. Formation and activation of sigma(G) ordinarily requires prior activity of sigma(F) in the prespore and sigma(E) in the mother cell. Here we report that in spoIIA mutants lacking both sigma(F) and the anti-sigma factor SpoIIAB and in which sigma(E) is not active, sigma(G) nevertheless becomes active. Further, its activity is largely confined to the mother cell. Thus, there is a switch in the location of sigma(G) activity from prespore to mother cell. Factors contributing to the mother cell location are inferred to be read-through of spoIIIG, the structural gene for sigma(G), from the upstream spoIIG locus and the absence of SpoIIAB, which can act in the mother cell as an anti-sigma factor to sigma(G). When the spoIIIG locus was moved away from spoIIG to the distal amyE locus, sigma(G) became active earlier in sporulation in spoIIA deletion mutants, and the sporulation septum was not formed, suggesting that premature sigma(G) activation can block septum formation. We report a previously unrecognized control in which SpoIIGA can prevent the appearance of sigma(G) activity, and pro-sigma(E) (but not sigma(E)) can counteract this effect of SpoIIGA. We find that in strains lacking sigma(F) and SpoIIAB and engineered to produce active sigma(E) in the mother cell without the need for SpoIIGA, sigma(G) also becomes active in the mother cell.  相似文献   

10.
11.
The use of a fluorogenic substrate, 5-octanoylaminofluorescein-di-beta-D-galactopyranoside, for beta-galactosidase has made it possible to visualize enzyme activity in individual cells of sporulating populations of Bacillus subtilis by fluorescence microscopy. lacZ fusions to different sporulation-associated genes have been used to investigate the cell compartmentalization of gene expression during sporulation. A strain with a lacZ fusion to sspA, a gene which is transcribed by E-sigma G at a late stage of sporulation, displayed predominantly compartment-specific fluorescence. Expression of the early-expressed spoIIA locus, which includes the structural gene for sigma F, was seen not to be compartmentalized. Populations of strains with lacZ fusions to gpr and dacF, genes which are transcribed by E-sigma F at intermediate stages of sporulation, included some organisms showing uncompartmentalized fluorescence and others showing compartment-specific fluorescence; the proportion showing compartment-specific fluorescence increased in samples taken later in sporulation. Several possible explanations of the results obtained with gpr and dacF are considered. A plausible interpretation is that sigma F activity is initially not compartmentalized and becomes compartmentalized as sporulation progresses. The progression to compartmentalization does not require the activities of the sporulation-specific factor sigma E or sigma G but may require some product of sigma F activity.  相似文献   

12.
13.
The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis.  相似文献   

14.
S Lu  L Kroos 《Journal of bacteriology》1994,176(13):3936-3943
During sporulation of Bacillus subtilis, proteolytic activation of pro-sigma K and ensuing sigma K-dependent gene expression normally require the activity of many sporulation gene products. We report here that overproducing pro-sigma K at the onset of sporulation substantially uncouples sigma K-dependent gene expression from its normal dependency. Overproducing pro-sigma K in strains with a mutation in spoIIIG, spoIIIA, spoIIIE, or spoIVB partially restored sigma K-dependent gene expression in the mother cell and resulted in accumulation of a small amount of polypeptide that comigrated with sigma K, but these mutants still failed to form spores. In contrast, sporulation of spoIVF mutants was greatly enhanced by pro-sigma K overproduction. The products of the spoIVF operon are made in the mother cell and normally govern pro-sigma K processing, but overproduction of pro-sigma K appears to allow accumulation of a small amount of sigma K, which is sufficient to partially restore mother cell gene expression and spore formation. This spoIVF-independent mechanism for processing pro-sigma K depends on sigma E, an earlier-acting mother cell-specific sigma factor. The spoIIID gene, which encodes a mother cell-specific DNA-binding protein that is normally required for pro-sigma K production, was shown to be required for efficient pro-sigma K processing as well. bof (bypass of forespore) mutations bypassed this requirement for spoIIID, suggesting that SpoIIID is less directly involved in pro-sigma K processing than are spoIVF gene products. However, bof spoIIID double mutants overproducing pro-sigma K still failed to sporulate, indicating that SpoIIID serves another essential role(s) in sporulation in addition to its multiple roles in the production of sigma K.  相似文献   

15.
A sporulation-specific sigma factor of Bacillus subtilis (sigma E) is formed by a proteolytic activation of a precursor protein (P31). Synthesis of the precursor protein is shown to be abolished in B. subtilis mutants with plasmid insertions as far as 940 base pairs upstream of the P31 structural gene (sigE), and processing of P31 to sigma E is blocked by a deletion in this upstream region. These results substantiate the view that sigE is the distal member of a 2-gene operon and demonstrate that the upstream gene (spoIIGA) is necessary for sigma E formation.  相似文献   

16.
For construction of bifunctionally active membrane-bound fusion proteins, we designed plasmids encoding fusion proteins in which the carboxyl terminus of Escherichia coli proline carrier was joined to the amino terminus of E. coli beta-galactosidase directly or with a collagen linker inserted between the two. The expressions of these fusion proteins complemented deficiencies in both proline transport and beta-galactosidase activity in E. coli cells. The fusion proteins were stable and mostly localized in the cytoplasmic membrane. The proline transport activities of the fusion proteins were kinetically similar to that of the wild type proline carrier. The beta-galactosidase moiety of the collagen-linked fusion protein was liberated from membrane vesicles by collagenase treatment. The Km value of released beta-galactosidase for o-nitrophenyl beta-D-galactopyranoside hydrolysis was similar to that of membrane-bound beta-galactosidase in the fusion protein. These results indicated that the fusion proteins are bifunctionally active and exhibit normal proline transport and beta-galactosidase activities. The crypticity of the beta-galactosidase activity associated with the fusion proteins indicated that the carboxyl terminus of the proline carrier was located on the cytoplasmic side of the membrane.  相似文献   

17.
18.
19.
The spoIID gene, which is involved in Bacillus subtilis sporulation, was fused to the beta-galactosidase gene, lacZ, of Escherichia coli so that the expression of beta-galactosidase would be under the control of the spoIID locus. When the fused product was inserted into the B. subtilis chromosome, production of beta-galactosidase indicated that the spoIID gene was expressed 1.5 h after the start of sporulation. When the spoIID::lacZ fusion was inserted into the chromosome of sporulation mutants, all strains carrying spo0 lesions and those with mutations in spoIIA, spoIIE and spoIIG loci failed to make beta-galactosidase. The proposed provisional order of expression of operons governing stage II is spoIIA----[spoIIG, spoIIE]----[spoIID, spoIIB, spoIIF].  相似文献   

20.
Using recombinant DNA techniques, we have constructed phoA-lacZ gene fusions. Two of the fusions encode hybrid proteins containing approximately half of alkaline phosphatase at the amino terminus joined to beta-galactosidase. For the one fusion strain analyzed in detail, it was shown that the hybrid protein is found in the membrane fraction of cells. In its membrane location, the beta-galactosidase activity of the hybrid is not sufficient to support cell growth on lactose. Unexpectedly, fusions containing phoA and lacZ joined in the wrong translational reading frame were also obtained. These fusions direct the phosphate-regulated synthesis of beta-galactosidase, apparently via a translation restart mechanism. Thus, when gene fusions are constructed, the presence of properly regulated beta-galactosidase activity does not necessarily indicate that a hybrid protein is being produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号