首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes play a pivotal role in catalyzing diverse reactions. However, their instability upon repetitive/prolonged use, as well as their inhibition by high substrates and product concentration, remains an area of concern. In this study, porcine pancreatic α-amylase was immobilized on magnetic Fe2O3 nanoparticles (Fe2O3-NPs) in order to hydrolyze starch. The magnetic nanoparticle bound enzymes retained 94% of their initial enzyme activity. X-ray diffraction and atomic force microscopy analyses showed that the prepared matrix had advantageous microenvironment and a large surface area for binding significant amounts of protein. Functional groups present in enzyme and support were monitored by Fourier transform infrared spectroscopy. Immobilized enzyme exhibited lowered pH optimum (pH 6.0) to a greater degree than its soluble counterpart (pH 7.0). Optimum temperature for the immobilized enzyme shifted towards higher temperatures. The immobilized enzyme was significantly more resistant to inactivation caused by various metal ions and chemical denaturants. Immobilized α-amylase hydrolyzed 92% starch in a batch process, after 8 h at 40°C; while the free enzyme could hydrolyze only 73% starch under similar experimental conditions. A reusability experiment demonstrated that the immobilized enzyme retained 83% of its original activity even after its 8th repeated use.  相似文献   

2.
α-Amylase was immobilized on Dowex MAC-3 with 88 % yield and amyloglucosidase on Amberlite IRA-400 ion-exchange resin beads with 54 % yield by adsorption process. Immobilized enzymes were characterized to measure the kinetic parameters and optimal operational parameters. Optimum substrate concentration and temperature were higher for immobilized enzymes. The thermal stability of the enzymes enhanced after the immobilization. Immobilized enzymes were used in the hydrolysis of the natural starch at high concentration (35 % w/v). The time required for liquefaction of starch to 10 dextrose equivalent (DE) and saccharification of liquefied starch to 96 DE increased. Immobilized enzymes showed the potential for use in starch hydrolysis as done in industry.  相似文献   

3.
《Process Biochemistry》2010,45(8):1422-1426
The starch hydrolyzing enzyme amyloglucosidase (AMG) from Rhizopus was immobilized onto the protonated salt (TS) and basic (TB) forms of chemically synthesized poly(o-toluidine) (POT) using adsorption and covalent binding. The polymers were activated with glutaraldehyde prior to covalent bonding. The immobilization efficiency was affected by the pH of the immobilization medium, contact time and amount of enzyme. After immobilization, the pH and temperature were changed to conditions under which the enzyme is most active. Immobilized AMG was more stable with respect to changes in pH and increases in temperature compared to free AMG. The immobilized enzyme retained high catalytic activity after multiple uses and showed enhanced stability with storage compared to free enzyme.  相似文献   

4.
Summary The glucooligosaccharide oxidase was covalently immobilized to chitosan with polyethyleneimine and glutaraldehyde. Immobilization improved thermal stability. When used for conversion of starch hydrolysate to oligosaccharic acids, the immobilized enzyme maintained 75% initial activity after 60 days of continuous operation. Strong substrate inhibition was seen at high concentrations of cellobiose and lactose for free enzyme but not for immobilized enzyme.  相似文献   

5.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP g-1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min-1 µg-1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

6.
Glucose oxidase (GOD) was immobilized on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane. The immobilized GOD showed better performance as compared to the free enzyme in terms of thermal stability retaining 46% of the original activity at 70 degrees C where the original activity corresponded to that obtained at 20 degrees C. FT-IR and SEM were employed to study the membrane morphology and structure after treatment at 70 degrees C. The pH profile of the immobilized and the free enzyme was found to be similar. A 2.4-fold increase in Km value was observed after immobilization whereas Vmax value was lower for the immobilized GOD. Immobilized glucose oxidase showed improved operational stability by maintaining 33% of the initial activity after 35 cycles of repeated use and was found to retain 94% of activity after 1 month storage period. Improved resistance against urea denaturation was achieved and the immobilized glucose oxidase retained 50% of the activity without urea in the presence of 5M urea whereas free enzyme retained only 8% activity.  相似文献   

7.
The technique of reversed-flow gas chromatography (RFGC) was employed for the determination of the alcoholic fermentation phases and of kinetic parameters for free and immobilized cell systems, at different initial glucose concentrations and temperature values. In addition to this, due to its considerable advantages over other techniques, RFGC was used for the characterization of a new biocatalyst, yeast cells immobilized on starch gel, and especially wheat starch gel. Immobilization of wine yeast Saccharomyces cerevisiae AXAZ-1 was accomplished on wheat and corn starch gels in order to prepare new biocatalysts with great interest for the fermentation industry. The RFGC led with great accuracy, resulting from a literature review, to the determination of reaction rate constants and activation energies at each phase of the fermentation processes. A maximum value of rate constants was observed at initial glucose concentration of 205 g/L, where a higher number of yeast cells was observed. The increase of glucose concentrations had a negative influence on the growth of AXAZ-1 cells and rate constants were decreased. The decrease of fermentation temperature caused a substantial reduction in the viability of immobilized cells as well as in rate constant values. Activation energies of corn starch gel presented lower values than those of wheat starch gel. However, the two supports showed higher catalytic efficiency than free cell systems, proving that starch gels may act as a promoter of the catalytic activity of the yeast cells involved in the fermentation process.  相似文献   

8.
The technique of reversed-flow gas chromatography (RFGC) was employed for the determination of the alcoholic fermentation phases and of kinetic parameters for free and immobilized cell systems, at different initial glucose concentrations and temperature values. In addition to this, due to its considerable advantages over other techniques, RFGC was used for the characterization of a new biocatalyst, yeast cells immobilized on starch gel, and especially wheat starch gel. Immobilization of wine yeast Saccharomyces cerevisiae AXAZ-1 was accomplished on wheat and corn starch gels in order to prepare new biocatalysts with great interest for the fermentation industry. The RFGC led with great accuracy, resulting from a literature review, to the determination of reaction rate constants and activation energies at each phase of the fermentation processes. A maximum value of rate constants was observed at initial glucose concentration of 205?g/L, where a higher number of yeast cells was observed. The increase of glucose concentrations had a negative influence on the growth of AXAZ-1 cells and rate constants were decreased. The decrease of fermentation temperature caused a substantial reduction in the viability of immobilized cells as well as in rate constant values. Activation energies of corn starch gel presented lower values than those of wheat starch gel. However, the two supports showed higher catalytic efficiency than free cell systems, proving that starch gels may act as a promoter of the catalytic activity of the yeast cells involved in the fermentation process.  相似文献   

9.
A novel immobilization matrix, poly(3-methylthienyl methacrylate)–poly(3-thiopheneacetic acid) (PMTM–PTAA), was synthesized and used for the covalent immobilization of Saccharomyces cerevisiae invertase to produce invert sugar. The immobilization resulted in 87% immobilization efficiency. Optimum conditions for activity were not affected by immobilization and the optimum pH and temperature for both free and immobilized enzyme were found to be 4.5 and 55 °C, respectively. However, immobilized invertase was more stable at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined using the Lineweaver–Burk plot. The Km values were 35 and 38 mM for free and immobilized enzyme, respectively. The Vmax values were 29 and 24 mg glucose/mg enzyme min for free and immobilized enzyme, respectively. Immobilized enzyme could be used for the production of glucose and fructose from sucrose since it retained almost all the initial activity for a month in storage and retained the whole activity in repeated 50 batch reactions.  相似文献   

10.
Glucoamylase and pullulanase were immobilized on reconstituted bovine-hide collagen membranes using the covalent azide linkage method. A pretanning step was incorporated into the immobilization procedure to enable the support matrix to resist proteolytic activity while accommodating an operating temperature of 50 degrees C. The immobilized glucoamylase and pullulanase activities were 0.91 and 0.022 mg dextrose equivalent (DE) min(-1) cm(-2) of membrane, respectively. Immobilized glucoamylase had a half-life of 50 days while the immobilized pullulanase had a half-life of 7 days. This is a considerably improved stability over that reported by other researchers. The enzymes were studied in their free and immobilized forms on a variety of starch substrates including waxy maize, a material which contains 80% alpha-1-6-glucosidic linkages. Substrate concentrations ranged from 1% to a typical commercial concentration of 30%. Conversion efficiencies of 90-92% DE were obtained with free and immobilized glucoamylase preparations. Conversion enhancements of 4-5 mg of DE above this level were obtained by the use of pullulanase in its free or immobilized forms. Close examination of free pullulanase stability as a function of pH indicated improved thermal stability at higher pH values. At 50 degrees C and pH 5.0, the free enzyme was inactivated after 24 h. At pH 7.0, the enzyme still possessed one-half its activity after 72 h. Studies were conducted in both batch and continuous total recycle reactors. All experiments were conducted at 50 degrees C. Experiments conducted with coimmobilized enzymes proved quite promising. Levels of conversion equivalent to those obtained with the individually immobilized enzymes were realized.  相似文献   

11.
The direct conversion of starch hydrolysate (15 Dextrose Equivalent) to ethanol using a coimmobilizate of amyloglucosidase and Saccharomyces cerevisiae was studied in a batch stirred tank reactor. The performance of the reactor for various system parameters viz. stirrer speed, pH, initial substrate concentration and temperature has been studied. The ethanol productivity is limited by inhibition for initial substrate concentrations above 75 g/l. The optimum pH and temperature of reaction is 5.0 and 30 °C respectively.  相似文献   

12.
Polyacylonitrile fibers (PAN) surfaces were modified with chemical polymerization of conductive polyaniline (PANI) in the presence of potassium dichromate as an oxidizing agent. The effect of aniline concentration on the grafting efficiency and on the electrical surface resistance of PAN/PANI composite fibers was investigated. The surface resistance of the conductive composite fibers in this work was found to be between 8.0 and 0.5 kΩ/cm. As the amount of grafted PANI increased on the PAN fibers the electrical resistance of composite fibers decreased. The PAN/PANI composite fibers were characterized by SEM and FTIR studies. Composite PAN/PANI fibers were used for reversible immobilization of invertase. The immobilization efficiency and the activity of the immobilized invertase (from 1.0 mg/mL invertase solution at pH 5.5) were increased with increasing PANI contents of the composite fibers. The maximum amount of immobilized enzyme onto composite fibers containing 2.0% PANI was about 76.6 mg/g. The optimum pH for the free enzyme was observed at 5.0. On the other hand, immobilized invertase yielded a broad optimum pH profile between pH 5.0 and 7.0. Immobilized invertase exhibited 83% of its original activity even after two months storage at 4 °C while the free enzyme showed only 7% of its initial activity.  相似文献   

13.
A series of porous polyurethane (PU) microparticles from poly(vinyl alcohol) (PVA) and hexamethylene diisocyanate (HMDI) using different ratios of components were obtained by one step method. Molar compositions of PU microparticles were estimated by determination of nitrogen, isocyanate and hydroxyl groups. PU carriers which were synthesized using optimal initial molar ratios of PVA and HMDI were applied for immobilization of maltogenase (MG) from Bacillus stearothermophilus. Immobilized enzyme exhibited higher catalytic activity and enhanced temperature stability in comparison with the native MG. Maximal loading 7.78 mg/g wet carrier was reached when PU microparticles with initial molar ratio of PVA and HMDI = 1:3 was used as a carrier for immobilization. The high efficiency of immobilization (EI) was obtained using PU microparticles when initial molar ratio of HMDI and PVA was 1:1–1:10. High stability of MG immobilized onto PU microparticles during storage was demonstrated. Immobilized starch hydrolyzing enzyme was successfully tested in batch and column type reactors for hydrolysis of potato starch. MG immobilized onto PU enables easy separation from the reaction medium and reuse of the immobilized preparation over seven reaction cycles in bath operation and at least three cycles in column type reactor.  相似文献   

14.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

15.
Soybean seed coat peroxidase (SBP) was immobilized on various polyaniline-based polymers (PANI), activated with glutaraldehyde. The most reduced polymer (PANIG2) showed the highest immobilization capacity (8.2 mg SBP?g?1 PANIG2). The optimum pH for immobilization was 6.0 and the maximum retention was achieved after a 6-h reaction period. The efficiency of enzyme activity retention was 82%. When stored at 4°C, the immobilized enzyme retained 80% of its activity for 15 weeks as evidenced by tests performed at 2-week intervals. The immobilized SBP showed the same pH-activity profile as that of the free SBP for pyrogallol oxidation but the optimum temperature (55°C) was 10°C below that of the free enzyme. Kinetic analysis show that the Km was conserved while the specific Vmax dropped from 14.6 to 11.4 µmol min?1 µg?1, in agreement with the immobilization efficiency. Substrate specificity was practically the same for both enzymes. Immobilized SBP showed a greatly improved tolerance to different organic solvents; while free SBP lost around 90% of its activity at a 50% organic solvent concentration, immobilized SBP underwent only 30% inactivation at a concentration of 70% acetonitrile. Taking into account that immobilized HRP loses more than 40% of its activity at a 20% organic solvent concentration, immobilized SBP performed much better than its widely used counterpart HRP.  相似文献   

16.
The present study was performed to produce the protease using free and immobilized cells of locally isolated cold-adapted psychrotolerant yeast Cryptococcus victoriae CA-8. Cell immobilization was performed using sodium alginate as entrapping agent. The best conditions for enzyme production by both free and immobilized cells of the yeast were temperature of 15°C and initial pH of 8.0. The optimal incubation times were 72 and 96 h for immobilized and free cells, respectively. Immobilized cells were reused in 3 successive reaction cycles without any loss in the maximum protease activity. Little decreases in the protease activity were observed in 4 and 5 cycles. Under the optimized conditions, the maximum enzyme activities were determined as 12.1 and 13.5 U/mL for free and immobilized cells, respectively. This is a first attempt on cold-active alkaline protease production by free and/or immobilized cells of yeasts. Besides, the protease activity of the yeast C. victoriae CA-8 was investigated for the first time in the present study.  相似文献   

17.
Xanthine dehydrogenase (EC 1.2.1.37) was isolated from chicken livers and immobilized by adsorption to a Sepharose derivative, prepared by reaction of n-octylamine with CNBr-activated Sepharose 4B. Using a crude preparation of enzyme for immobilization it was observed that relatively more activity was adsorbed than protein, but the yield of immobilized activity increased as a purer enzyme preparation was used. As more activity and protein were bound, relatively less immobilized activity was recovered. This effect was probably due to blocking of active xanthine dehydrogenase by protein impurities. The kinetics of free and immobilized xanthine dehydrogenase were studied in the pH range 7.5-9.1. The Km and V values estimated for free xanthine dehydrogenase increase as the pH increase; the K'm and V values for the immobilized enzyme go through a minimum at pH 8.1. By varying the amount of enzyme activity bound per unit volume of gel, it was shown that K'm is larger than Km are result of substrate diffusion limitation in the pores of the support material. Both free and immobilized xanthine dehydrogenase showed substrate activation at low concentrations (up to 2 microM xanthine). Immobilized xanthine dehydrogenase was more stable than the free enzyme during storage in the temperature range of 4-50 degrees C. The operational stability of immobilized xanthine dehydrogenase at 30 degrees C was two orders of magnitude smaller than the storage stability, t 1/2 was 9 and 800 hr, respectively. The operational stability was, however, better than than of immobilized milk xanthine oxidase (t 1/2 = 1 hr). In addition, the amount of product formed per unit initial activity in one half-life, was higher for immobilized xanthine dehydrogenase than for immobilized xanthine oxidase. Unless immobilized milk xanthine oxidase can be considerable stabilized, immobilized chicken liver xanthine dehydrogenase is more promising for application in organic synthesis.  相似文献   

18.
A change of the reaction rate was observed for the lipasecatalysed hydrolysis of ricebran oil in a batch stirred tank reactor using immobilized lipase enzyme as compared to free enzyme. The reactor rate was observed to be controlled mainly by factors like temperature, pH, initial enzyme concentration, initial substrate concentration and initial products concentration.  相似文献   

19.
A novel support has been utilized for immobilization of lipase, which was prepared by amination of silica with ethanolamine followed by cross linking with glutaraldehyde. Lipases from Rhizopus oryzae 3562 and Enterobacter aerogenes were immobilized on activated silica gel, where they retained 60 and 50% of respective original activity. The thermal stability of the immobilized lipases was significantly improved in comparison to the free forms while the pH stability remained unchanged. E. aerogenes and R. oryzae 3562 lipases retained 75 and 97% of respective initial activity on incubation at 90 degrees C, whereas both the free forms became inactive at this temperature. The conversion yield of isoamyl acetate was found to be higher with the immobilized fungal (90 vs. 21%) and bacterial lipases (64 vs. 18%) than the respective free forms. Immobilized R. oryzae 3562 lipases retained 50% activity for isoamyl acetate synthesis up to ten cycles whereas it was eight cycles for E. aerogenes.  相似文献   

20.
The parameters involved in immobilization of alkaline protease on nylon using glutaraldehyde as coupling agent and the characteristics of the immobilized enzyme were investigated. Optimum temperature and pH of both free and immobilized enzyme for the degradation of protein was found. Immobilized enzyme showed better thermal stability than the free enzyme. The reusability and storage stability of the immobilized enzyme was also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号