首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
It is often suggested that fire acts as an environmental filter that selects species and functional traits, and reduces trait variability within communities, affecting ecosystem function and underlying services. This may be particularly important in fire‐sensitive ecosystems, such as the central European Alps, where fires are scarce. According to climate and land use change scenarios in Europe, fire risk will increase during the next decades, raising important questions about the maintenance of ecological and functional resilience in these regions. We used two families of saproxylic beetles (i.e. Cerambycidae and Buprestidae) as model group to test the combined effect of fire and altitude on species and trait composition in the central Alps of Switzerland. Trait response was based on weighted means and variation of 15 traits over the communities. Our results showed an overall positive effect of fire on taxonomic and functional diversity, while indicator species and community analyses revealed that the response to fire was also modulated by altitude. The positive effect of fire and the presence of large populations of pyrophilous species suggest co‐evolution with fire and adaptation to disturbance in the Alps. Biodiversity in the central Alps might thus be more resilient to fire than expected. In the light of climatic and land use changes, forest management and species conservation in the central Alps have to consider fire one of the major disruptive factors that have shaped and will shape species composition and ecosystem services.  相似文献   

2.
Despite numerous studies on the response of Mediterranean ecosystems to fire, few have measured the respective resilience of vegetation and fauna compartments. For 28 years, we conducted an annual monitoring of avifauna composition and vegetation structure (cover profile) following a severe wildfire in a holm oak (Quercus ilex) stand in southern France. Our aim was to estimate the time necessary for this bird–vegetation system to return to a state analogous to its pre-fire state. In the burned plots, low herbaceous and shrub layers were gradually replaced by higher, woody layers of vegetation. Neither bird species richness nor inter-annual bird species turnover showed significant differences from one year to the next over the study period. In contrast, bird species composition did change steadily, leading to an almost complete replacement of early-successional species by late-successional ones. Using the first axes of multivariate analyses as ‘proxy variables’ of vegetation or avifauna recoveries, we estimated by extrapolation the recovery times of these two ecosystem components at ca. 50 and 35 years, respectively. Towards the end of the study period, the rate of change in avifauna composition decreased comparatively to that of vegetation structure. Our results show that holm oak woodlands are highly resilient and seem to tolerate a ~50-year fire interval, even if it remains to be assessed how resilient they would be in the case of increased fire frequency. More generally, our multivariate approach, which allows comparative estimations of resilience in different components of an ecosystem using qualitative as well as quantitative criteria, could be applied to various case studies in disturbance and restoration ecology.  相似文献   

3.
The study of plant functional types (PFTs) has been widely emphasized when analysing plant community changes in relation to variations in climate and disturbance regime. In this study, we search for PFTs of woody species near forest–grassland boundaries in South Brazil where, due to climate, forests tend to expand over grassland but are being restricted by frequent fires. We aimed at answering the questions: (i) which plant functional types of forest woody species can establish in adjacent grassland subject to fire disturbance and (ii) which plant functional types of forest and grassland woody species are related to short-term community dynamics in frequently burned grassland. Traits were assessed in woody plants in 156 plots (6.75 m2) arranged in 12 transects across forest–grassland boundaries with different fire history in their grassland part. The analysis used a recursive algorithm to search for traits and PFTs maximally associated to spatial distance from forest limit in one analysis, and elapsed time since last fire in another. As a result, nine PFTs of forest woody species were identified that best described community patterns associated to distance from forest. Resprouting ability characterized forest plants able to colonize grasslands. PFT diversity was higher in border plots than inside forest or grassland. Four PFTs of forest and grassland woody species best described woody species community patterns in the grassland associated to elapsed time since fire. Taller individuals of single-stemmed shrubs predominated in late post-fire recovery (3–4 years), while shorter multi-stemmed shrubs in recently burned areas (3 months to 1 year). PFTs of forest trees occurred in border plots or, as established adults, in grassland, remaining unaffected by fire. We conclude that easily measurable structural plant traits, such as those used in our study, are sufficient to evaluate post-fire community dynamics. Forest PFTs in burned grassland are restricted to those with resprouting ability to survive recurrent fire events. Establishment success is highest on protected sites with lesser or low-intensity fire.  相似文献   

4.
Background: Boreal forest understory plant communities are known to be resilient to fire – the species composition of stands after a fire is quite similar to the pre-fire composition. However, we know little about recovery of individual plants within particular locations in forest stands (i.e. plot-level changes) since we usually do not have pre-fire data for plots.

Aims: We wanted to determine whether species recruited into the same or different locations in a Pinus banksiana stand that experienced a severe wildfire.

Methods: We used pre-existing permanent plots to evaluate the cover of understory after an unplanned wildfire.

Results: Across the entire stand nine of 47 species showed a significant change in cover. The largest change in a plant functional group was in the mosses, with all species present before fire being eliminated. There was no change in species diversity or total cover. At the plot level, species composition showed a much greater change. An average of 47% of the species present in a plot before the fire were absent in the same plot after the fire, and the total species turnover in plots was 88% of the species present before the fire. The plots showed a similar shift in species composition.

Conclusions: These results confirm that boreal forest communities show a high degree of resilience to fire, but within a forest stand species will be found in different locations following fire, potentially exposing them to a different set of biotic and abiotic conditions in these new locations.  相似文献   

5.
Kipfer T  Moser B  Egli S  Wohlgemuth T  Ghazoul J 《Oecologia》2011,167(1):219-228
Fires shape fundamental properties of many forest ecosystems and climate change will increase their relevance in regions where fires occur infrequently today. In ecosystems that are not adapted to fire, post-fire tree recruitment is often sparse, a fact that might be attributed to a transient lack of mycorrhizae. Ectomycorrhizal (EcM) fungi play an important role for recruitment by enhancing nutrient and water uptake of their hosts. The questions arise whether and for how long the EcM community is transformed by fire. We investigated the resistance and resilience of EcM fungal communities on a chronosequence of 12 Pinus sylvestris stands in Valais (Switzerland) and Val d’Aosta (Italy) affected by fire between 1990 and 2006. Soil samples from burnt and non-burnt forests were analyzed with respect to EcM fungi by means of a bioassay. The number of EcM species was significantly lower in samples from recently (2–5 years) burnt sites than non-burnt forest, and increased with time since fire reaching levels of adjacent forests after 15–18 years. Community composition changed after fire but did not converge to that of non-burnt sites over the 18 year period. Only Rhizopogon roseolus and Cenococcum geophilum were abundant in both burnt sites and adjacent forest. Our data indicate fire resistance of some EcM fungal species as well as rapid resilience in terms of species number, but not in species composition. As long as the function of different EcM species for seedling establishment is unknown, the consequences of long-term shifts in EcM community composition for tree recruitment remain unclear.  相似文献   

6.
Amazon forests are fire-sensitive ecosystems and consequently fires affect forest structure and composition. For instance, the legacy of past fire regimes may persist through some species and traits that are found due to past fires. In this study, we tested for relationships between functional traits that are classically presented as the main components of plant ecological strategies and environmental filters related to climate and historical fires among permanent mature forest plots across the range of local and regional environmental gradients that occur in Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine functional traits evaluated across all 378 species were correlated with some environmental variables. Although there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon forests lack a compositional legacy of past fire.  相似文献   

7.
Local ecosystem resilience to fire disturbance can be influenced by multiple factors, from topography and climate, to fire history and pre-fire structure of biotic communities. Here we investigated the factors affecting post-fire recovery of scrub vegetation in areas under Mediterranean climate affected by frequent fires. We hypothesized that, under comparable climatic and topographic conditions, geological factors (with bedrock type as a proxy) would be at least as important as fire history in explaining patterns of post-fire recovery. We surveyed scrub vegetation in a mountain study area in Portugal, using a stratified random sampling scheme, with fire frequency, time since last fire, and bedrock type (granite vs. schist) as stratifying layers. Based on vegetation and plant community data from 40 plots, we analyzed total species richness and composition, and the relative abundance of functional groups defined on the basis of general (non fire-specific) life-history traits. We found that, at a local scale, lithology can override fire history in determining post-fire recovery. Vegetation plots on granite exhibited a considerable development of tall scrubs and higher values of total species richness. They also hosted higher numbers of animal-dispersed woody species, of trees and tall scrubs, of woody deciduous species, and of forest, edge and tall scrub species. Differences in the post-fire development of scrub vegetation and in the functional profile of plant communities highlight the need to consider local geological diversity when establishing priorities for post-fire active restoration under scenarios of limited resources.  相似文献   

8.
 自然火干扰是森林生态系统的正常行为, 是决定森林物种构成、群落结构和生物多样性的主要因素。该研究将新疆喀纳斯旅游区作为研究对象, 把自然火干扰和树种结构作为不可分割的整体, 就喀纳斯旅游区树种结构对自然火干扰的响应进行了分析。结果表明, 受自然火干扰林分和长期未受干扰林分的树种结构之间存在明显的差异, 自然火干扰对阔叶针叶树种比、树种丰富度(Ma)和Shannon-Wiener多样性指数(H′)存在极显著的影响, 受自然火干扰后, 三者均表现出增大的特征。此外, 所调查范围内曾发生8次自然火干扰事件, 并且不同时期发生的自然火干扰对以阔叶针叶树种比为特质的季相结构和树种丰富度存在极显著的影响。自然火干扰是影响新疆喀纳斯旅游区季相结构和组成结构的主要因素之一。  相似文献   

9.
With climate change, natural disturbances such as storm or fire are reshuffled, inducing pervasive shifts in forest dynamics. To predict how it will impact forest structure and composition, it is crucial to understand how tree species differ in their sensitivity to disturbances. In this study, we investigated how functional traits and species mean climate affect their sensitivity to disturbances while controlling for tree size and stand structure. With data on 130,594 trees located on 7617 plots that were disturbed by storm, fire, snow, biotic or other disturbances from the French, Spanish, and Finnish National Forest Inventory, we modeled annual mortality probability for 40 European tree species as a function of tree size, dominance status, disturbance type, and intensity. We tested the correlation of our estimated species probability of disturbance mortality with their traits and their mean climate niches. We found that different trait combinations controlled species sensitivity to disturbances. Storm-sensitive species had a high height-dbh ratio, low wood density and high maximum growth, while fire-sensitive species had low bark thickness and high P50. Species from warmer and drier climates, where fires are more frequent, were more resistant to fire. The ranking in disturbance sensitivity between species was overall consistent across disturbance types. Productive conifer species were the most disturbance sensitive, while Mediterranean oaks were the least disturbance sensitive. Our study identified key relations between species functional traits and disturbance sensitivity, that allows more reliable predictions of how changing climate and disturbance regimes will impact future forest structure and species composition at large spatial scales.  相似文献   

10.
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide, resulting in a need to identify factors that contribute to an ecosystem’s resilience or capacity to recover from disturbance. Forest resilience to disturbance may decline with climate change if mature trees are able to persist under stressful environmental conditions that do not permit successful recruitment and survival after a disturbance. In this study, we used the change in proportional representation of black spruce pre- to post-fire as a surrogate for resilience. We explored links between patterns of resilience and tree ring signals of drought stress across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned stands of black spruce in interior Alaska (USA); the relative dominance of black spruce after fire ranged from almost no change (high resilience) to a 90% decrease (low resilience). Variance partitioning analysis indicated that resilience was related to site environmental characteristics and climate–growth responses, with no unique contribution of pre-fire stand composition. The largest shifts in post-fire species composition occurred in sites that experienced the compounding effects of pre-fire drought stress and shallow post-fire organic layer thickness. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites in cool and moist locations. Climate–growth responses can provide an estimate of stand environmental stress to climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience.  相似文献   

11.
Fire is widely used for conservation management in the savannah landscapes of northern Australia, yet there is considerable uncertainty over the ecological effects of different fire regimes. The responses of insects and other arthropods to fire are especially poorly known, despite their dominant roles in the functioning of savannah ecosystems. Fire often appears to have little long‐term effect on ordinal‐level abundance of arthropods in temperate woodlands and open forests of southern Australia, and this paper addresses the extent to which such ordinal‐level resilience also occurs in Australia’s tropical savannahs. The data are from a multidisciplinary, landscape‐scale fire experiment at Kapalga in Kakadu National Park. Arthropods were sampled in the two major savannah habitats (woodland and open forest) using pitfall traps and sweep nets, in 15–20 km2 compartments subjected to one of three fire regimes, each with three replicates: ‘early’ (annual fires lit early in the dry season), ‘late’ (annual fires lit late in the dry season), and ‘unburnt’ (fires absent during the five‐year experimental period 1990–94). Floristic cover, richness and composition were also measured in each sampling plot, using point quadrats. There were substantial habitat differences in floristic composition, but fire had no measured effect on plant richness, overall composition, or cover of three of the four dominant species. Of the 11 ordinal arthropod taxa considered from pitfall traps, only four were significantly affected by fire according to repeated‐measures ANOVA . There was a marked reduction in ant abundance in the absence of fire, and declines in spiders, homopterans and silverfish under late fires. Similarly, the abundances of only four of the 10 ordinal taxa from sweep catches were affected by fire, with crickets and beetles declining in the absence of fire, and caterpillars declining under late fires. Therefore, most of the ordinal taxa from the ground and grass‐layer were unaffected by the fire treatments, despite the treatments representing the most extreme fire regimes possible in the region. This indicates that the considerable ordinal‐level resilience to fire of arthropod assemblages that has previously been demonstrated in temperate woodlands and open forests of southern Australia, also occurs in tropical savannah woodlands and open forests of northern Australia.  相似文献   

12.
Forests are vital for biodiversity, carbon storage and ecosystem services, but can be potentially threatened by fires. Given the significance of forests and fire in a changing climate, research into the long-term effects of fire on forests plays an important role in understanding the global carbon cycle by the forests functioning as a large terrestrial carbon sink or source. In this study, we used aerial photography from 1975 and 2013 to count the change in the number of trees in 560 dry sclerophyll plots (40 × 40m) in the Blue Mountains of Australia. We analysed the relationship between the number of fires and severe fires in that period on the change in numbers of trees. We found that the average response was an increase of 1 tree per plot over 38 years. The number of fires had a small positive effect on tree numbers; plots with 2 or 3 severe fires had 1 and 2 extra trees, respectively, than those without fire. One exception was a severe fire in 2001 that did not show this positive effect, probably because it corresponded with extensive drought. Our findings suggest that number of forest canopy trees is resilient to the number of fires and number of severe fires.  相似文献   

13.
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.  相似文献   

14.
1. Disturbance is a strong driver of community assembly and fire has long been recognised as one of the main disturbances of terrestrial ecosystems. This study tested the resilience of dung beetles to fire events in campos rupestres, which is a tropical savanna ecosystem that evolved under a frequent fire regime, by assessing the resistance and recovery of their communities. 2. Dung beetles were sampled before and after a fire event and the effect of fire on dung beetle richness, abundance, mean community biomass and composition was tested. The effects of time since last fire and fire frequency on the community were also tested. 3. No effect of fire occurrence, time since last fire and fire frequency on any community variable was found. 4. Some non‐mutually exclusive mechanisms promoting the resistance and recovery of dung beetles in campos rupestres could be acting in synergy. One potential mechanism is the mismatched seasonality between fire events and dung beetle occurrence, as fires occur during the dry season and dung beetles are present above ground during the rainy season. Furthermore, dung beetles are insects that remain buried during most of their lifetime, which could protect individuals from being burned. Another potential mechanism is the replacement of species in burned areas by the movement of individuals from unburned areas, attracted by resources and/or by metacommunity dynamics. 5. It is concluded that in this ‘fire‐dependent’ ecosystem, dung beetle communities are resilient to fire and seem not to be structured by this disturbance.  相似文献   

15.
In the Mediterranean region, wildfires have devastating effects on animals with limited mobility. With their poor dispersal abilities, their habitats on vegetation and in litter, and their sensitivity to humidity and shade, we expected land snails to be an interesting model to assess short, medium and long-term impact of fires on fauna biodiversity and their resilience. Stratified sampling was carried out on 12 sampling sites in garrigues and forests of Provence (southeastern France), according to fire regime (number of fires, fire intervals and age of the last fire) over the past 30 years. Data were investigated using diversity indexes, Kruskal–Wallis test, dendrogram of affinities and Correspondence Analysis (CA). We found, however, that Mediterranean land snail communities are particularly resilient to fires. Although abundance is drastically reduced in the short-term, species richness and community diversity are preserved provided that the time lapse between two successive fires is longer than the time required for recovery (i.e. around 5 years). This high community resilience in the short-term may be partly due to ecological and ethological aptitudes of land snails. However, these astonishing results, which have implications for conservation biology, are mainly due to the presence, within burned areas, of cryptic refuges that allow initial land snail survival, malacofauna persistence after successive fires and consistent biogeographical patterns in the long-term.  相似文献   

16.
The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest (Quercus robur, Ilex aquifolium) and pine plantation (Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.  相似文献   

17.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

18.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

19.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

20.
Open habitats dominated by herbaceous plants on thin, rocky soils occur within the forests of eastern North America. Although these habitats vary in origin, structure, geology, and species composition, all contribute greatly to regional biodiversity by harboring endemic and/or rare plants. Little is known about how disturbances affect plant populations in these ecosystems. Fire once was a frequent natural disturbance in the Ketona dolomite glades of Alabama, an ecosystem harboring eight endemic taxa and numerous other species of conservation concern. We designed an experiment to determine how the reintroduction of fire into the glades and surrounding longleaf pine forests affects populations of rare glade plant species. Experimental and control plots were established within the glades. Experimental plots were burned in April 2004, and all plots were surveyed during two subsequent growing seasons (2004 and 2005). Populations of three of 14 species of conservation concern declined significantly after the initial fire but recovered the next year. Among other herbaceous species, only five and two differed in population size in 2004 and 2005, respectively. In 2004, more species were more abundant in control than burned plots, but this difference was not detected in 2005. Multivariate community‐level analyses of species presence–absence suggested that the effects of fire were negligible by the 2005 survey. Populations of young trees that had invaded the glades declined dramatically as a result of treatment fires. These results suggest that the reintroduction of fire will not harm glade species and may help prevent encroachment of the surrounding forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号