首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modification of cellular proteins by the ubiquitin-like protein SUMO is essential for nuclear processes and cell cycle progression in yeast. The Ulp1 protease catalyzes two essential functions in the SUMO pathway: (1) processing of full-length SUMO to its mature form and (2) deconjugation of SUMO from targeted proteins. Selective reduction of the proteolytic reaction produced a covalent thiohemiacetal transition state complex between a Ulp1 C-terminal fragment and its cellular substrate Smt3, the yeast SUMO homolog. The Ulp1-Smt3 crystal structure and functional testing of elements within the conserved interface elucidate determinants of SUMO recognition, processing, and deconjugation. Genetic analysis guided by the structure further reveals a regulatory element N-terminal to the proteolytic domain that is required for cell growth in yeast.  相似文献   

2.
SUMO融合系统已成为目前大肠杆菌重组蛋白生产的重要手段,但在载体构建效率和蛋白可溶性等方面仍有待改进。本研究在PCR克隆酿酒酵母SUMO基因Smt3(Sm) 时意外发现Sm具有组成型原核启动子活性;而且经软莓BPROM程序预测发现大多数物种SUMO基因编码区都具有依赖s70的原核启动子。进一步通过整合Sm启动子和Sm 3¢末端StuⅠ位点特性以及引入His标签和超酸增溶标签,构建了基于Sm’-LacZα融合基因的一系列通用克隆表达载体,并通过蓝白斑筛选和SDS-PAGE分析进行了多个靶蛋白基因的克隆和表  相似文献   

3.
SUMO蛋白酶活性片段的表达、纯化及活性测定   总被引:3,自引:2,他引:3  
利用PCR技术人工合成编码酿酒酵母泛素样特异性蛋白酶1 (Ubiquitin-like specific protease 1,Ulp1)第403到621个氨基酸残基之间的DNA片段Ulp1p,并连接到大肠杆菌表达载体pET-3c中,构建出重组表达质粒pET-Ulp1p。将重组质粒转化至大肠杆菌BL21(DE3)中,氨苄青霉素抗性筛选转化子。经IPTG诱导4h后, SDS-PAGE结果显示,Ulp1p为可溶性表达,表达量占菌体总蛋白的50.8%。通过Ni-NTA凝胶亲和层析和G-25凝胶层析联用可以获得纯度大于95%的Ulp1p。Western-blotting分析表明,Ulp1p能与6xHis抗体产生免疫反应。以重组蛋白SUMO-hEGF(人表皮生长因子)和GST-SUMO-MT(金属硫蛋白)为底物进行酶切分析,结果显示,Ulp1p能特异性水解这两种SUMO融合蛋白,其比活为1.386 x104U/mg。  相似文献   

4.
The Smt3 (SUMO) protein is conjugated to substrate proteins through a cascade of E1, E2, and E3 enzymes. In budding yeast, the E3 step in sumoylation is largely controlled by Siz1p and Siz2p. Analysis of Siz- cells shows that SUMO E3 is required for minichromosome segregation and thus has a positive role in maintaining the fidelity of mitotic transmission of genetic information. Sumoylation of the carboxy-terminus of Top2p, a known SUMO target, is mediated by Siz1p and Siz2p both in vivo and in vitro. Sumoylation in vitro reveals that Top2p is an extremely potent substrate for Smt3p conjugation and that chromatin-bound Top2p can still be sumoylated, unlike many other SUMO substrates. By combining mutations in the TOP2 sumoylation sites and the SIZ1 and SIZ2 genes we demonstrate that the minichromosome segregation defect and dicentric minichromosome stabilization, both characteristic for Smt3p-E3-deficient cells, are mediated by the lack of Top2p sumoylation in these cells. A role for Smt3p-modification as a signal for Top2p targeting to pericentromeric regions was suggested by an analysis of Top2p-Smt3p fusion. We propose a model for the positive control of the centromeric pool of Top2p, required for high segregation fidelity, by Smt3p modification.  相似文献   

5.
利用基因工程技术,体外重组小分子类泛素修饰蛋白酶1(Ulp1)的活性片段,获得高表达、高特异性重组蛋白酶。从酿酒酵母Saccharomyces cerevisia中提取Ulp1编码第403到621个氨基酸残基之间的DNA片段(Ulp1p),在其C端加入6×His并连接到大肠杆菌表达载体pGEX中,构建重组表达质粒pGEX-Ulp1p-his6。将重组质粒转化至大肠杆菌Rosetta(DE3)中,氨苄青霉素抗性筛选转化子。表达、纯化后,以SUMO融合蛋白检测其活性。经过优化,该蛋白可溶性表达,表达量占菌体总蛋白的40.12%。可通过谷胱甘肽琼脂糖凝胶柱或Ni-NTA凝胶亲和层析纯化得到纯度98%的蛋白。经酶切分析,比活力为1.375×104U/mg。融合蛋白GST-Ulp1p-His6无需切除谷胱甘肽S-转移酶(GST)标签,具有很高的活性,制备简易;6×His标签,有利于底物蛋白切割后纯化,减少蛋白损失。本研究为制备高活力的SUMO蛋白酶提供了一个新方法。  相似文献   

6.
SUMO1/Smt3, a ubiquitin-like protein modifier, is known to conjugate to other proteins and modulate their functions in various important processes. Similar to the ubiquitin conjugation system, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme). In our previous report (Takahashi, Y., Toh-e, A., and Kikuchi, Y. (2001) Gene 275, 223-231), we showed that Siz1/Ull1 (YDR409w) of budding yeast, a member of the human PIAS family containing a RING-like domain, is a strong candidate for SUMO1/Smt3 ligase because the SUMO1/Smt3 modification of septin components was abolished in the ull1 mutant and Ull1 associated with E2 (Ubc9) and the substrates (septin components) in immunoprecipitation experiments. Here we have developed an in vitro Smt3 conjugation system for a septin component (Cdc3) using purified recombinant proteins. In this system, Ull1 is additionally required as well as E1 (Sua1.Uba2 complex), E2 (Ubc9), and ATP. A cysteine residue of the RING-like domain was essential for the conjugation both in vivo and in vitro. Furthermore, a region containing the RING-like domain directly interacted with Ubc9 and Cdc3. Thus, this SUMO/Smt3 ligase functions as an adaptor between E2 and the target proteins.  相似文献   

7.
An E. coli vector system was constructed which allows the expression of fusion genes via a l-rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.  相似文献   

8.
The initiation of bud and hyphal growth in the opportunistic fungal pathogen Candida albicans both involve polarized morphogenesis. However, there are many differences including the function of the septin proteins, a family of proteins involved in membrane organization in a wide range of organisms. Septins form a characteristic ring on the inner surface of the plasma membrane at the bud neck, whereas the septins are diffusely localized across emerging hyphal tips. In addition, septin rings are maintained at sites of septum formation in hyphae rather than being disassembled immediately after cytokinesis. The possibility that C. albicans septins are regulated by the small ubiquitin-like protein SUMO was examined in this study because the Saccharomyces cerevisiae septins were shown previously to be modified by SUMO (Smt3p). However, SUMO conjugation to septins was not detected during budding or hyphal morphogenesis in C. albicans. These results are supported by the lack of conserved SUMO consensus motifs between septins from the two organisms even after adjusting the predicted Cdc3p and Cdc12p septin sequences to account for mRNA splicing in C. albicans. Interestingly, a homolog of the Smt3p SUMO was identified in the C. albicans genome, and an epitope tagged version of Smt3p was conjugated to a variety of proteins. Immunofluorescence analysis showed prominent Smt3p SUMO localization at bud necks and sites of septum formation in hyphae similar to the septins. However, Smt3p was primarily detected on the mother cell side of the septin ring. A subset of these Smt3p-modified proteins co-immunoprecipitated with the septin Cdc11p. These results indicate that septin-associated proteins and not the septins themselves are the key target of SUMO modification at the bud neck in C. albicans.  相似文献   

9.
SMT3 of Saccharomyces cerevisiae is an essential gene encoding a ubiquitin-like protein similar to mammalian SUMO-1. When a tagged Smt3 or human SUMO-1 was expressed from GAL1 promoter, either gene rescued the lethality of the smt3 disruptant. By indirect-immunofluorescent microscopy, the HA-tagged Smt3 was detected mostly in nuclei and also at the mother-bud neck just like septin fibers. Indeed immunoprecipitation experiments revealed that Cdc3, one of septin components, was modified with Smt3. Furthermore, the protein level of the Cdc3-Smt3 conjugate was reduced and the septin rings disappeared in a ubc9-1 mutant at a restrictive temperature, where the Smt3 conjugation system should be defective. Thus, we conclude that Smt3 was conjugated to Cdc3 in septin rings localized at the mother-bud neck. Around the time of cytokinesis the Cdc3-Smt3 conjugate disappeared. We discuss the biological significance of this Smt3 conjugation to a septin component.  相似文献   

10.
Kwon SY  Choi YJ  Kang TH  Lee KH  Cha SS  Kim GH  Lee HS  Kim KT  Kim KJ 《Plasmid》2005,53(3):274-282
Recently developed bacterial hemoglobin (VHb) fusion expression vector has been widely used for the production of many target proteins due to its distinctive properties of expressing fusion protein with red color which facilitates visualization of the steps in purification, and increasing solubility of the target proteins. However, after intensive use of the vector, several defects have been found. In this report, we present a modified VHb fusion vector (pPosKJ) with higher efficiency, in which most of the defects were eliminated. First, it was found that thrombin protease often digests target protein as well as inserted thrombin cleavage site, so it was replaced by a TEV cleavage site for more specific cleavage of VHb from target protein. Second, a glycine-rich linker sequence was inserted between 6x his-tag and VHb to improve the affinity of 6x his-tag to Ni-NTA resin, resulting in higher purity of eluted fusion protein. Third, EcoRI and XhoI restriction sites located elsewhere in the vector were removed to make these restriction sites available for the cloning of target protein coding genes. A pPosKJ vector was fully examined with an anti-apoptotic BCL-2 family member of Caenorhabditis elegans, CED-9. A C-terminal VHb fusion expression vector (pPosKJC) was also constructed for stable expression of target proteins that may be difficult to express with an N-terminal fusion. Vaccinia-related kinase 1 (VRK1) was also successfully expressed and purified using the vector with high yield. Taken together, we suggest that the VHb fusion vector may be well suited for high-throughput protein expression and purification.  相似文献   

11.
12.
SUMO (small ubiquitin-like modifier)/Smt3 (suppressor of mif two) is a member of the ubiquitin-related protein family and is known to conjugate with many proteins. In the sumoylation pathway, SUMO/Smt3 is transferred to substrate lysine residues through the thioester cascade of E1 (activating enzyme) and E2 (conjugating enzyme), and E3 (SUMO ligase) functions as an adaptor between E2 and each substrate. Yeast Ull1 (ubiquitin-like protein ligase 1)/Siz1, a PIAS (protein inhibitor of activated STAT)-type SUMO ligase, modifies both cytoplasmic and nuclear proteins. In this paper, we performed a domain analysis of Ull1/Siz1 by constructing various deletion mutants. A novel conserved N-terminal domain, called PINIT, as well as the RING-like domain (SP-RING) were required for the SUMO ligase activity in the in vitro conjugation system and for interaction with Smt3 in an in vitro binding assay. The most distal N-terminal region, which contains a putative DNA-binding SAF-A/B, Acinus, and PIAS (SAP) motif, was not required for the ligase activity but was involved in nuclear localization. A strong SUMO-binding motif was identified, which interacted with Smt3 in the two-hybrid system but was not necessary for the ligase activity. The most distal C-terminal domain was important for stable localization at the bud neck region and thereby for the substrate recognition of septins. Furthermore, the C-terminal half conferred protein instability on Ull1/Siz1. Taken together, we conclude that the SP-RING and PINIT of Ull1/Siz1 are core domains of the SUMO ligase, and the other domains are regulatory for protein stability and subcellular localization.  相似文献   

13.
SUMO/Smt3, a ubiquitin-like modifier, is known to conjugate other proteins and modulate their functions in various processes. Recently, Ull1/Siz1 was discovered as a novel PIAS-type E3 required for septin sumoylation in yeast. We demonstrate here that the second PIAS-type Nfi1/Siz2 is also a SUMO ligase. It interacted with Smt3, SUMO/Smt3 conjugating enzyme Ubc9 and a septin component Cdc3 in the two-hybrid system. The region containing the RING-like domain of Nfi1/Siz2 bound directly to Ubc9 and Cdc3, but not to Smt3. Nfi1/Siz2 stimulated Smt3 conjugation to Cdc3 in vitro. In this in vitro system, Smt3 formed polymeric chains in the presence of higher concentrations of E1 and E2 enzymes. When the lysine(15) residue of Smt3 was substituted with arginine, Smt3 chain-polymerization was abolished. Using this polysumoylation-deficient mutant Smt3, we found that Cdc3 and Nfi1/Siz2 were modified with Smt3 at multiple sites. Finally we found that the C-terminal truncated form of Ull1/Siz1 was mis-localized in vivo, but retained its SUMO ligase activity in vitro. We discuss the regulation of these SUMO ligases in vivo and in vitro.  相似文献   

14.
Ubiquitin-like protease 1 (Ulp1) of Saccharomyces cerevisiae emerges as a fundamental tool to obtain the natural N-terminal target protein by cleavage of the small ubiquitin-related modifier (SUMO) fusion protein. However, the costly commercial Ulp1 and its complicated procedures limit its application in the preparation of the target protein with natural N-terminal sequence. Here, we describe the preparation of bioactive codon-optimized recombinant truncated Ulp1 (Leu403-Lys621) (rtUlp1) of S. cerevisiae in Escherichia coli using only one-step with Ni–NTA affinity chromatograph, and the application of rtUlp1 to cleave the SUMO fusion protein by simply mixing the purified rtUlp1, SUMO fusion protein and DL-Dithiothreitol in Tris–HCl buffer. The optimal expression level of non-fusion protein rtUlp1 accounts for approximately 50 % of the total cellular protein and 36 % of the soluble form by addition of isopropyl β-D-l-thiogalactopyranoside at a final concentration of 0.4 mM at 18 °C for 20 h. The purification of target protein rtUlp1 was conducted by Ni–NTA affinity chromatography. The final yield of rtUlp1 was 45 mg/l in flask fermentation with a purity up to 95 %. Furthermore, the high purity of rtUlp1 could effectively cleave the SUMO-tTβRII fusion protein (SUMO gene fused to truncated transforming growth factor-beta receptor type II gene) with the above simplified approach, and the specific activity of the rtUlp1 reached up to 2.8 × 104 U/mg, which is comparable to the commercial Ulp1. The preparation and application strategy of the rtUlp1 with commonly available laboratory resources in this study will be convenient to the cleavage of the SUMO fusion protein to obtain the natural N-terminal target protein, which can be implemented in difficult-to-express protein functional analysis.  相似文献   

15.
With demand increasing for the production of many different proteins for biophysical or biochemical analyses, rapid methods are needed for the cloning, expression and purification of native recombinant proteins. In particular, generic methods are required that are independent of the target gene sequence. To address this challenge we have constructed four Escherichia coli expression vectors that can be used for ligation independent cloning (LIC) of an amplified target gene sequence. These vectors represent the combinatorial pairing of two different parent vector backbones with two different affinity tags. The target gene is cloned downstream of the sequence coding for an affinity-tagged small ubiquitin related modifier (SUMO). Using enhanced green fluorescent protein (eGFP) as an example we demonstrate that the LIC procedure works with high efficiency for all four of the vectors. We also show that the resultant recombinant SUMO fusion proteins can be overexpressed in E. coli and readily isolated by standard affinity purification techniques. Importantly, the purified fusion product can be treated with recombinant SUMO hydrolase to yield a mature target protein with any residue except proline at the amino terminus. We demonstrate an application of this by generating recombinant eGFP containing a non-native amino terminal cysteine residue and using it as a substrate for expressed protein ligation (EPL). The reagents and techniques described here represent a generic method for the rapid cloning and production of a target protein, and would be appropriate for a high throughput genomic scale expression project.  相似文献   

16.
Ubiquitin-like proteins (ub-lps) are conjugated by a conserved enzymatic pathway, involving ATP-dependent activation at the C terminus by an activating enzyme (E1) and formation of a thiolester intermediate with a conjugating enzyme (E2) prior to ligation to the target. Ubc9, the E2 for SUMO, synthesizes polymeric chains in the presence of its E1 and MgATP. To better understand conjugation of ub-lps, we have performed mutational analysis of Saccharomyces cerevisiae Ubc9p, which conjugates the SUMO family member Smt3p. We have identified Ubc9p surfaces involved in thiolester bond and Smt3p-Smt3p chain formation. The residues involved in thiolester bond formation map to a surface we show is the E1 binding site, and E2s for other ub-lps are likely to bind to their E1s at a homologous site. We also find that this same surface binds Smt3p. A mutation that impairs binding to E1 but not Smt3p impairs thiolester bond formation, suggesting that it is the E1 interaction at this site that is crucial. Interestingly, other E2s and their relatives also use this same surface for binding to ubiquitin, E3s, and other proteins, revealing this to be a multipurpose binding site and suggesting that the entire E1-E2-E3 pathway has coevolved for a given ub-lp.  相似文献   

17.
A T7 promoter-based His6-tagging vector has been constructed that directs the synthesis in Escherichia coli of fusion proteins containing a stretch of six histidine residues at the N terminus. The vector allows overproduction and single-step purification of His6-fusion protein by immobilized metal (Ni2+) chelate affinity chromatography. The gene encoding leucyl-tRNA synthetase (leuS) was cloned into this vector and expressed in high level. The specific activity of the synthetase in the crude extract of E. coli JM109(DE3) transformant containing the His6-tagging vector with the gene leuS was approximately 110 times that of JM109(DE3) (the host strain without the vector). The overproduced His6-fusion leucyl-tRNA synthetase can be purified to homogeneity under native conditions within 2 h by one-step affinity chromatography with an overall yield of 55%. The His6-tag at the N terminus of leucyl-tRNA synthetase did not affect its aminoacylation activity or the secondary structure.  相似文献   

18.
SUMO proteases possess two enzymatic activities to hydrolyze the C-terminal region of SUMOs (hydrolase activity) and to remove SUMO from SUMO-conjugated substrates (isopeptidase activity). SUMO proteases bind to SUMOs noncovalently, but the physiological roles of the binding in the functions of SUMO proteases are not well understood. In this study we found that SUMO proteases (Axam, SENP1, and yeast Ulp1) show different preferences for noncovalent binding to various SUMOs (SUMO-1, -2, -3, and yeast Smt3) and that the hydrolase and isopeptidase activities of SUMO proteases are dependent on their binding to SUMOs through salt bridge. Expression of Smt3 suppressed the phenotype of yeast mutant lacking smt3, which exhibits growth arrest, and the binding of Ulp1 to Smt3 was essential for this rescue activity. Although expression of an Smt3 mutant (smt3R64E(GG)), which conjugates to substrate but loses the ability to bind to Ulp1, rescued the phenotype of yeast lacking smt3 partially, the mutant cells showed an increment in the doubling time and a delay of desumoylation of Smt3-conjugated Cdc3. These results indicate that the noncovalent binding of SUMO protease to SUMO through salt bridge is essential for the enzymatic activities and that the balance between sumoylation and desumoylation is important for cell growth control.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号