首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a group, sex chromosome aneuploidies - the 47,XXY, 47,XYY, 47,XXX and 45,X conditions - constitute the most common class of chromosome abnormality in human live-births. Considerable attention has been given to the somatic abnormalities associated with these conditions, but less is known about their meiotic phenotypes; that is, how does sex chromosome imbalance influence the meiotic process. This has become more important with the advent of assisted reproductive technologies, because individuals previously thought to be infertile can now become biological parents. Indeed, there are several recent reports of successful pregnancies involving 47,XXY fathers, and suggestions that cryopreservation of ovarian tissue might impart fertility to at least some Turner syndrome individuals. Thus, the possible consequences of sex chromosome aneuploidy on meiotic chromosome segregation need to be explored.  相似文献   

2.
Fluorescent in situ hybridization (FISH) utilizing an X chromosome whole library probe was used directly to assess the rate of aneuploidy and pairing behavior of the X chromosome in human female meiosis. Over 3000 meiotic cells obtained from fetal ovaries (gestational age 13–22 weeks) were scored for meiotic stage and evaluated for pairing abnormalities. No pairing anomalies were observed in 832 pachytenes. Twenty-two percent (88/398) of cells in zygotene were partially paired, but nonhomologous pairings could not be identified. One aneuploid preleptotene oocyte, presumably from mitotic nondisjunction was detected. To our knowledge, this is the first report of the use of FISH utilizing whole chromosome probes to evaluate the pairing behavior of chromosomes in human female meiosis. The application of this technique to study the relationship between nondisjunction and chromosome pairing behavior in maternal-age-related aneuploidy is discussed.  相似文献   

3.
Chromosome abnormalities in the embryos of domestic animals are mostly eliminated during development. De novo chromosome abnormalities in the embryos of domestic animals have been detected in a larger proportion of embryos produced by in vitro fertilization and somatic cell nuclear transfer than in those produced by natural mating or artificial insemination. The increased incidence of abnormalities in embryos produced in vitro provides evidence for an influence of the embryo production procedures on chromosome stability. Research strategies involving cytogenetics, molecular biology and reproductive biotechnologies hold the promise of yielding insight into the mechanisms underlying chromosome instability in embryos and the impact of the in vitro environment on the chromosome make-up of embryos.  相似文献   

4.
Genetic Analysis of Stellate Elements of Drosophila Melanogaster   总被引:3,自引:1,他引:2       下载免费PDF全文
Repeated elements are remarkably important for male meiosis and spermiogenesis in Drosophila melanogaster. Pairing of the X and Y chromosomes is mediated by the ribosomal RNA genes of the Y chromosome and X chromosome heterochromatin, spermiogenesis depends on the fertility factors of the Y chromosome. Intriguingly, a peculiar genetic system of interaction between the Y-linked crystal locus and the X-linked Stellate elements seem to be also involved in male meiosis and spermiogenesis. Deletion of the crystal element of the Y, via an interaction with the Stellate elements of the X, causes meiotic abnormalities, gamete-genotype dependent failure of sperm development (meiotic drive), and deposition of protein crystals in spermatocytes. The current hypothesis is that the meiotic abnormalities observed in cry(-) males is due to an induced overexpression of the normally repressed Ste elements. An implication of this hypothesis is that the strength of the abnormalities would depend on the amount of the Ste copies. To test this point we have genetically and cytologically examined the relationship of Ste copy number and organization to meiotic behavior in cry(-) males. We found that heterochromatic as well as euchromatic Ste repeats are functional and that the abnormality in chromosome condensation and the frequency of nondisjunction are related to Ste copy number. Moreover, we found that meiosis is disrupted after synapsis and that cry-induced meiotic drive is probably not mediated by Ste.  相似文献   

5.
Microsporogenesis was analyzed in five accessions of Brachiaria dictyoneura presenting x = 6 as the basic chromosome number. All accessions were tetraploid (2n = 4x = 24) with chromosome pairing in bi-, tri-, and quadrivalents. The recorded meiotic abnormalities were those typical of polyploids, including precocious chromosome migration to the poles, laggard chromosomes, and micronucleus formation. The frequency of these abnormalities, however, was lower than those reported for other polyploid accessions previously analyzed for other Brachiaria species. Cell fusion and absence of cytokinesis were also recorded in some accessions, leading to restitutional nucleus formation in some cells. Genetically unbalanced microspores, binucleate, and 2n microspores were found among normal meiotic products as results from these abnormalities. The limitation in using these accessions as pollen donor in interspecific crosses with sexual species with x = 7 or x = 9 in breeding programs is discussed.  相似文献   

6.
A total of 44 accessions of Brachiaria decumbens were analysed for chromosome count and meiotic behaviour in order to identify potential progenitors for crosses. Among them, 15 accessions presented 2n = 18; 27 accessions, 2n = 36; and 2 accessions, 2n = 45 chromosomes. Among the diploid accessions, the rate of meiotic abnormalities was low, ranging from 0.82% to 7.93%. In the 27 tetraploid accessions, the rate of meiotic abnormalities ranged from 18.41% to 65.83%. The most common meiotic abnormalities were related to irregular chromosome segregation, but chromosome stickiness and abnormal cytokinesis were observed in low frequency. All abnormalities can compromise pollen viability by generating unbalanced gametes. Based on the chromosome number and meiotic stability, the present study indicates the apomictic tetraploid accessions that can act as male genitor to produce interspecific hybrids with B. ruziziensis or intraspecific hybrids with recently artificially tetraploidized accessions.  相似文献   

7.
Mating of a babirusa (Babyrousa babyrussa) boar and a domestic sow (Sus scrofa) resulted in the birth of 5 live domestic pig-babirusa hybrid piglets. Chromosome analysis of one of the surviving males confirmed that they were domestic pig-babirusa hybrids by revealing the presence of a complete haploid set of 19 porcine chromosomes as well as a complete haploid set of 19 babirusa chromosomes in the karyotype. None of the surviving piglets, two males and one female, had shown signs of sexual maturity at age 27 months. Histological examination of gonadal biopsies from the 2 males revealed that both were azoospermatic. Immunostaining revealed SCP3-positive axial elements in the nuclei of primary spermatocytes, indicating that they were progressing through leptotene and zygotene of meiotic prophase. However, the presence of multiple short stretches of axial elements in pachytene nuclei indicated that this phase was blocked, probably due to aberrant chromosome pairing. Histological examination of the ovaries revealed follicular structures, but oocytes within them were generally degenerated. We conclude that both male and female pig-babirusa hybrids were infertile, most likely due to germ cell death resulting from abnormalities of chromosome pairing during meiotic prophase.  相似文献   

8.
Cytogenetics of wild and captive bred non-domestic animals provides us with valuable information that can be implemented in wildlife management and species conservation strategies. In this review, we summarized the data published to date describing a range of chromosome abnormalities observed in non-domestic animals and their effect on phenotype. Two important factors that can potentially have drastic effects on captive breeding programs are discussed: presence of classic chromosome abnormalities, spontaneously-occurring and inherited, and intraspecific variations in chromosome number. Short-term consequences, primarily reduced reproductive efficiency, and long-term consequences, such as changes in population dynamics, are examined.  相似文献   

9.
10.
Pinellia ternata is an important traditional Chinese medicinal plant. Its different populations in China have various ploidy levels, based on x = 13, as well as extensive aneuploid series. The microsporogenesis process was observed in specimens from three populations from three regions of Hubei Province; they were characterized by normal and abnormal meiotic divisions in pollen mother cells (PMCs) at all stages simultaneously. Meiotic abnormalities including univalents/multivalents, chromosomal laggards/bridges and micronuclei appeared in about 50% of the PMCs, together with abnormal cytokinesis. Chromatin/chromosome transfer between meiocytes occurred only during the first division, at low frequency; this might contribute to these meiotic abnormalities. Although the remaining 50% of the PMCs presented normal cytological behavior, pollen fertility was only about 2%. These results provide cytological explanations for its low seed-set and the general use of asexual reproduction through tubers and bulbils; it also explains the wide variations in chromosome number.  相似文献   

11.
Chromosome distribution: experiments on cell hybrids and in vitro.   总被引:5,自引:0,他引:5  
Ostergren (1951) provided a simple explanation for both chromosome distribution in mitosis and chromosome segregation in meiosis, and more recently a molecular extension of his hypothesis has been possible. This report focuses on experimental tests of these ideas. Micromanipulation experiments on cell hybrids containing both meiotic and mitotic spindles demonstrate that differences in meiotic and mitotic chromosome behavior are determined by something intrinsic to the chromosome: meiotic chromosomes transferred to a mitotic spindle (or vice versa) behave just as they normally would. The molecular explanation postulates polarized growth or binding of microtubules at kinetochores. This has just been tested in vitro by McGill & Brinkley (1975) and by Telzer, Moses & Rosenbaum (1975), and their results are reviewed. In addition, a novel method for in vitro studies is described - mechanical demembranation of cells which is compatible with quite normal chromosome movement in anaphase. After addition of microtubule subunits to a demembranated prophase cell, chromosome orientation and movement toward an aster was observed for the first time in vitro. It is concluded that important aspects of chromosome distribution are probably understood at both the cellular and molecular levels, but final tests are still required. The outlook is hopeful indeed because the gaps in our knowledge are well known - the necessity of observations on prophase is a recurrent theme - and the means of filling the gaps are in hand.  相似文献   

12.
The odd-even effect, by which B chromosomes are more detrimental in odd numbers, has been reported in plants and animals. In grasshoppers, there are only a few reports of this effect and all were referred to as traits related to the formation of aberrant meiotic products (AMPs). Here we review the existing information about B chromosome effects on AMPs, chiasma frequency and the number of active nucleolus organizer regions (NORs) per cell. Polysomy for A chromosomes and B chromosomes are two kinds of chromosome polymorphism frequently found in grasshoppers. In some aspects, e.g. meiotic behaviour and mitotic instability leading to individual mosaicism (in the case of mitotically unstable Bs), polysomic As show similar characteristics to B chromosomes. In fact, polysomy is regarded as one of the main mechanisms for B chromosome origin. Here we review some features of meiotic behaviour in known cases of polysomy and mitotically unstable Bs in grasshoppers, in looking for possible causes for the odd-even effect. In all these traits, the odd-even effect was apparent, although its appearance was not universal in any case, with variation among species or populations within the same species. The equational division and lagging of the extra chromosomes, when univalents, could favour the appearance of abnormal meiotic products, and the formation of bivalents, when there are two or more extra chromosomes, inhibits this process. Therefore, the odd-even effect might be a consequence of the concomitant operation of both aspects of extra chromosome meiotic behaviour. The possibility that the odd-even effect might result from an increase in cell stress generated by odd numbers is suggested.  相似文献   

13.
1. Pollen mother cells exposed to low dosages of x-rays at various stages show different frequencies of chromosome abnormalities in the first meiotic anaphase. 2. Maximum frequencies of abnormalities were obtained in buds irradiated in the pachytene stage of the meiotic prophase and in the preceding mitosis. 3. These results are taken to indicate that the x-ray-sensitive portions of the chromonemata are closely approximated in pairs in pachytene and in the early mitotic prophase. The significance of this in relation to non-homologous pairing is indicated. 4. From the nature of the chromosome configurations observed it is concluded that chromonemata are two-parted when they synapse and that a chromonematic division occurs between pachytene and anaphase and during the mitotic prophase. 5. The frequencies of abnormalities show a linear relationship to dosage. 6. The diameter of the sensitive volume of the chromonema is calculated and found to approximate the diameter of some known protein molecules. 7. The linkage mechanism is found to make up about 90 per cent of the total sensitive volume which corresponds with the approximate reduction in length of the chromonema from pachytene to anaphase. 8. The relation of these sensitive volumes to the gene is discussed.  相似文献   

14.
Sex chromosomes,recombination, and chromatin conformation   总被引:17,自引:0,他引:17  
  相似文献   

15.
Experimental induction of a variety of meiotic abnormalities in maize microsporocytes is described. One class of abnormal chromosome behavior observed is characterized by aberrant centromere-spindle interactions such that the first meiotic division may be equational, the second disjunctional. This abnormality was found following treatment with ethylene oxide-treated cornstarch extracts, ethylene glycol, polyethylene glycols and glyoxal, at synapsed chromosome stages. These is no evidence that crossover frequency was affected in abnormal cells although premature loss of chiasmata may follow such treatment. The results suggest novel approaches to studies of the mechanism of co- and auto-orientation, chiasma maintenence and chromosome functions during synapsis.  相似文献   

16.
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.  相似文献   

17.
Three sexual interspecific hybrids of Brachiaria (HBGC076, HBGC009, and HBGC014) resulting from crosses between B. ruziziensis (female genitor) and B. decumbens and B. brizantha (male genitors) produced by Embrapa Beef Cattle in the 1980s were cytologically analyzed by conventional methods for meiotic studies. The cytogenetic analysis showed the occurrence of common meiotic abnormalities among them. The most frequent abnormalities were those related to irregular chromosome segregation due to polyploidy. Other abnormalities, such as chromosome stickiness, absence of cytokinesis, irregular cytokinesis, abnormal spindle orientation, and abnormal nucleolus disintegration, were found in the three hybrids, while, chromosome disintegration was detected only in HBGC014. All the abnormalities, except for abnormal nucleolus disintegration, can cause unbalanced gamete formation, leading to pollen sterility. Multivalent chromosome association at diakinesis revealed genome affinity between the two parental species in the hybrids, suggesting some possibility for gene introgression. Presently, the Brachiaria breeding program has the objective of releasing, primarily, apomictic hybrids as new cultivars since they do not segregate but preserve the genetic makeup indefinitely. Besides, they result in homogeneous pastures which are easier to manage. The sexual hybrids, however, are paramount in the breeding program: they work as 'bridges' to introgress traits of interest into the apomictic genotypes. The cytogenetic analyses of these three hybrids substantiate their maintenance in the breeding program due to low frequency of meiotic abnormalities, complemented by interesting agronomic traits. They may be used in crosses to generate new cultivars in the future.  相似文献   

18.
Summary There are two dosage sensitive sites in the zeste-white region of the Drosophila melanogaster X chromosome that affect meiotic chromosome behavior. Single-cistron mutants at essential and female fertility loci in the two segments have been tested for meiotic effects similar to those of deficiencies. None of the mutants have detectable meiotic effects. A de novo search for meiotic mutants in the region has not uncovered any, but the results suggest that a deficiency for the zeste-white region would be useful for detecting meiotic mutants elsewhere in the genome. Tests for interactions between the deficiency and known meiotic mutants support this. Though tentative, these results suggest that non-essential regions need not be devoid of function.Research supported by National Science Foundation grant PCM 79-01824  相似文献   

19.
The meiotic behavior and pollen viability of the tetraploids (2n?=?4x?=?40) Arachis glabrata and A. nitida were analyzed aiming to provide insights into the nature of these polyploids and into the mechanism that determines the low seed production of these species. Meiotic analysis revealed 21 different chromosome configurations at diakinesis-metaphase I in A. glabrata (from 20 II to 4 II?+?8 IV) and 7 in A. nitida (from 20 II to 2 I?+?12 II?+?2 III?+?2 IV). The multivalent associations (up to 8 IV) observed in some A. glabrata metaphases suggest that this species may have an autopolyploid origin. However, the fact that the mean number of bivalents varied among accessions indicates different degrees of diploidization among them. In contrast, the multivalents (up to 2 III?+?2 IV) observed in very low frequency in A. nitida indicate that this species may be either a largely diploidized autopolyploid or a segmental allopolyploid. A great diversity, although in low frequency, of meiotic abnormalities (abnormal chromosome orientation and segregation, chromosome bridges, irregular spindles, micronuclei, aneuploid nuclei, restitution nuclei, microcytes, monads, dyads, triads, and hexads) was detected in both species. The meiotic indexes were over 95%, and pollen viabilities ranged from 83.20 to 95.99%. These results suggest that chromosome behavior during meiosis would not severely affect pollen viability. Thus, the irregular chromosome behavior caused by the autopolyploid or segmental allopolyploid nature of these species may not be related to their low seed set production.  相似文献   

20.
During meiosis, DNA replication is followed by two consecutive rounds of chromosome segregation. Cells lacking the protein phosphatase CDC14 or its regulators, SPO12 and SLK19, undergo only a single meiotic division, with some chromosomes segregating reductionally and others equationally. We find that this abnormal chromosome behavior is due to an uncoupling of meiotic events. Anaphase I spindle disassembly is delayed in cdc14-1, slk19Delta, or spo12Delta mutants, but the chromosome segregation cycle continues, so that both meiotic chromosome segregation phases take place on the persisting meiosis I spindle. Our results show that Cdc14, Slk19, and Spo12 are not only required for meiosis I spindle disassembly but also play a pivotal role in establishing two consecutive chromosome segregation phases, a key feature of the meiotic cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号