首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under elevated atmospheric CO2 concentrations, soil carbon (C) inputs are typically enhanced, suggesting larger soil C sequestration potential. However, soil C losses also increase and progressive nitrogen (N) limitation to plant growth may reduce the CO2 effect on soil C inputs with time. We compiled a data set from 131 manipulation experiments, and used meta‐analysis to test the hypotheses that: (1) elevated atmospheric CO2 stimulates soil C inputs more than C losses, resulting in increasing soil C stocks; and (2) that these responses are modulated by N. Our results confirm that elevated CO2 induces a C allocation shift towards below‐ground biomass compartments. However, the increased soil C inputs were offset by increased heterotrophic respiration (Rh), such that soil C content was not affected by elevated CO2. Soil N concentration strongly interacted with CO2 fumigation: the effect of elevated CO2 on fine root biomass and –production and on microbial activity increased with increasing soil N concentration, while the effect on soil C content decreased with increasing soil N concentration. These results suggest that both plant growth and microbial activity responses to elevated CO2 are modulated by N availability, and that it is essential to account for soil N concentration in C cycling analyses.  相似文献   

2.
Rising levels of atmospheric CO2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant‐derived inputs can accumulate in the soil and become part of the soil C pool (“new soil C”), or accelerate losses of pre‐existing (“old”) soil C. The dynamics of the new and old pools will likely differ and alter the long‐term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta‐analysis, we found that while elevated CO2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1–4 years). Elevated CO2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO2 concentrations may be smaller than previously assumed.  相似文献   

3.
Elevated atmospheric carbon dioxide increases soil carbon   总被引:4,自引:0,他引:4  
The general lack of significant changes in mineral soil C stocks during CO2‐enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta‐analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2–9 years, at a median rate of 19 g C m?2 yr?1. We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m?2 yr?1 for 5–8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta‐analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.  相似文献   

4.
Anthropogenic nitrogen (N) deposition effects on soil organic carbon (C) decomposition remain controversial, while the role of plant species composition in mediating effects of N deposition on soil organic C decomposition and long‐term soil C sequestration is virtually unknown. Here we provide evidence from a 5‐year grassland field experiment in Minnesota that under elevated atmospheric CO2 concentration (560 ppm), plant species determine whether N deposition inhibits the decomposition of soil organic matter via inter‐specific variation in root lignin concentration. Plant species producing lignin‐rich litter increased stabilization of soil C older than 5 years, but only in combination with elevated N inputs (4 g m?2 year?1). Our results suggest that N deposition will increase soil C sequestration in those ecosystems where vegetation composition and/or elevated atmospheric CO2 cause high litter lignin inputs to soils.  相似文献   

5.
Soil has been identified as a possible carbon (C) sink to mitigate increasing atmospheric CO2 concentration. However, several recent studies have suggested that the potential of soil to sequester C is limited and that soil may become saturated with C under increasing CO2 levels. To test this concept of soil C saturation, we studied a gley and organic soil at a grassland site near a natural CO2 spring. Total and aggregate‐associated soil organic C (SOC) concentration showed a significant increase with atmospheric CO2 concentration. An asymptotic function showed a better fit of SOC and aggregation with CO2 level than a linear model. There was a shift in allocation of total C from smaller size fractions to the largest aggregate fraction with increasing CO2 concentration. Litter inputs appeared to be positively related to CO2 concentration. Based on modeled function parameters and the observed shift in the allocation of the soil C from small to large aggregate‐size classes, we postulate that there is a hierarchy in C saturation across different SOC pools. We conclude that the asymptotic response of SOC concentration at higher CO2 levels indicates saturation of soil C pools, likely because of a limit to physical protection of SOC.  相似文献   

6.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

7.
Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free‐air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted δ13C) into root‐derived particulate organic matter (POM) pools to 90‐cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N contents were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. Greater C inputs from fine‐root detritus under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long‐term laboratory incubations, possibly because microbial biomass was lower in the CO2‐enriched plots. Furthermore, the δ13CO2 of the C mineralized from the incubated soil closely tracked the δ13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate significant priming of the decomposition of pre‐experiment soil organic matter (SOM). Although potential C mineralization rates were positively and linearly related to total SOM C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may increase the potential for long‐term soil C storage. However, C in deeper soil is likely to take many years to accrue to a significant fraction of total soil C given relatively smaller root inputs at depth. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].  相似文献   

8.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

9.
Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long‐term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha?1 yr?1), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low‐N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the 13C‐CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.  相似文献   

10.
It is not clear whether the consistent positive effect of elevated CO2 on soil respiration (soil carbon flux, SCF) results from increased plant and microbial activity due to (i) greater C availability through CO2‐induced increases in C inputs or (ii) enhanced soil moisture via CO2‐induced declines in stomatal conductance and plant water use. Global changes such as biodiversity loss or nitrogen (N) deposition may also affect these drivers, interacting with CO2 to affect SCF. To determine the effects of these factors on SCF and elucidate the mechanism(s) behind the effect of elevated CO2 on SCF, we measured SCF and soil moisture throughout a growing season in the Biodiversity, CO2, and N (BioCON) experiment. Increasing diversity and N caused small declines in soil moisture. Diversity had inconsistent small effects on SCF through its effects on abiotic conditions, while N had a small positive effect that was unrelated to soil moisture. Elevated CO2 had large consistent effects, increasing soil moisture by 26% and SCF by 45%. However, CO2‐induced changes in soil moisture were weak drivers of SCF: CO2 effects on SCF and soil moisture were uncorrelated, CO2 effect size did not change with soil moisture, within‐day CO2 effects via soil moisture were neutral or weakly negative, and the estimated effect of increased C availability was 14 times larger than that of increased soil moisture. Combined with previous BioCON results indicating elevated CO2 increases C availability to plants and microbes, our results suggest that increased SCF is driven by CO2‐induced increases in substrate availability. Our results provide further support for increased rates of belowground C cycling at elevated CO2 and evidence that, unlike the response of productivity to elevated CO2 in BioCON, the response of SCF is not strongly N limited. Thus, N limited grasslands are unlikely to act as a N sink under elevated CO2.  相似文献   

11.
Biochar as a carbon‐rich coproduct of pyrolyzing biomass, its amendment has been advocated as a potential strategy to soil carbon (C) sequestration. Updated data derived from 50 papers with 395 paired observations were reviewed using meta‐analysis procedures to examine responses of soil carbon dioxide (CO2) fluxes, soil organic C (SOC), and soil microbial biomass C (MBC) contents to biochar amendment. When averaged across all studies, biochar amendment had no significant effect on soil CO2 fluxes, but it significantly enhanced SOC content by 40% and MBC content by 18%. A positive response of soil CO2 fluxes to biochar amendment was found in rice paddies, laboratory incubation studies, soils without vegetation, and unfertilized soils. Biochar amendment significantly increased soil MBC content in field studies, N‐fertilized soils, and soils with vegetation. Enhancement of SOC content following biochar amendment was the greatest in rice paddies among different land‐use types. Responses of soil CO2 fluxes and MBC to biochar amendment varied with soil texture and pH. The use of biochar in combination with synthetic N fertilizer and waste compost fertilizer led to the greatest increases in soil CO2 fluxes and MBC content, respectively. Both soil CO2 fluxes and MBC responses to biochar amendment decreased with biochar application rate, pyrolysis temperature, or C/N ratio of biochar, while each increased SOC content enhancement. Among different biochar feedstock sources, positive responses of soil CO2 fluxes and MBC were the highest for manure and crop residue feedstock sources, respectively. Soil CO2 flux responses to biochar amendment decreased with pH of biochar, while biochars with pH of 8.1–9.0 had the greatest enhancement of SOC and MBC contents. Therefore, soil properties, land‐use type, agricultural practice, and biochar characteristics should be taken into account to assess the practical potential of biochar for mitigating climate change.  相似文献   

12.
The growth and chemical composition of most plants are influenced by elevated CO2, but accompanying effects on soil organic matter pools and mineralization are less clearly defined, partly because of the short‐term nature of most studies. Herein we describe soil properties from a naturally occurring cold CO2 spring (Hakanoa) in Northland, New Zealand, at which the surrounding vegetation has been exposed to elevated CO2 for at least several decades. The mean annual temperature at this site is ≈ 15.5 °C and rainfall ≈ 1550 mm. The site was unfertilized and ungrazed, with a vegetation of mainly C3 and C4 grasses, and had moderate levels of ‘available’ P. Two soils were present ? a gley soil and an organic soil – but only the gley soil is examined here. Average atmospheric CO2 concentrations at 17 sampling locations in the gley soil area ranged from 372 to 670 ppmv. In samples at 0–5 cm depth, pH averaged 5.4; average values for organic C were 150 g, total N 11 g, microbial C 3.50 g, and microbial N 0.65 g kg?1, respectively. Under standardized moisture conditions at 25 °C, average rates of CO2‐C production (7–14 days) were 5.4 mg kg?1 h?1 and of net mineral‐N production (14 ?42 days) 0.40 mg kg?1 h?1. These properties were all correlated positively and significantly (P < 0.10) with atmospheric CO2 concentrations, but not with soil moisture (except for CO2‐C production) or with clay content; they were, however, correlated negatively and mainly significantly with soil pH. In spite of uncertainties associated with the uncontrolled environment of naturally occurring springs, we conclude that storage of C and N can increase under prolonged exposure to elevated CO2, and may include an appreciable labile fraction in mineral soil with an adequate nutrient supply.  相似文献   

13.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

14.
free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta‐analytic techniques, we summarized the results of 117 studies on plant biomass production, soil organic matter dynamics and biological N2 fixation in FACE and OTC experiments. The objective of the analysis was to determine whether elevated CO2 alters nutrient cycling between plants and soil and if so, what the implications are for soil carbon (C) sequestration. Elevated CO2 stimulated gross N immobilization by 22%, whereas gross and net N mineralization rates remained unaffected. In addition, the soil C : N ratio and microbial N contents increased under elevated CO2 by 3.8% and 5.8%, respectively. Microbial C contents and soil respiration increased by 7.1% and 17.7%, respectively. Despite the stimulation of microbial activity, soil C input still caused soil C contents to increase by 1.2% yr?1. Namely, elevated CO2 stimulated overall above‐ and belowground plant biomass by 21.5% and 28.3%, respectively, thereby outweighing the increase in CO2 respiration. In addition, when comparing experiments under both low and high N availability, soil C contents (+2.2% yr?1) and above‐ and belowground plant growth (+20.1% and+33.7%) only increased under elevated CO2 in experiments receiving the high N treatments. Under low N availability, above‐ and belowground plant growth increased by only 8.8% and 14.6%, and soil C contents did not increase. Nitrogen fixation was stimulated by elevated CO2 only when additional nutrients were supplied. These results suggest that the main driver of soil C sequestration is soil C input through plant growth, which is strongly controlled by nutrient availability. In unfertilized ecosystems, microbial N immobilization enhances acclimation of plant growth to elevated CO2 in the long‐term. Therefore, increased soil C input and soil C sequestration under elevated CO2 can only be sustained in the long‐term when additional nutrients are supplied.  相似文献   

15.
Increasing atmospheric CO2 concentration has led to concerns about potential effects on production agriculture as well as agriculture's role in sequestering C. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional and conservation) to elevated CO2. The study used a split‐plot design replicated three times with two management systems as main plots and two CO2 levels (ambient=375 μL L?1 and elevated CO2=683 μL L?1) as split‐plots using open‐top chambers on a Decatur silt loam (clayey, kaolinitic, thermic Rhodic Paleudults). The conventional system was a grain sorghum (Sorghum bicolor (L.) Moench.) and soybean (Glycine max (L.) Merr.) rotation with winter fallow and spring tillage practices. In the conservation system, sorghum and soybean were rotated and three cover crops were used (crimson clover (Trifolium incarnatum L.), sunn hemp (Crotalaria juncea L.), and wheat (Triticum aestivum L.)) under no‐tillage practices. The effect of management on soil C and biomass responses over two cropping cycles (4 years) were evaluated. In the conservation system, cover crop residue (clover, sunn hemp, and wheat) was increased by elevated CO2, but CO2 effects on weed residue were variable in the conventional system. Elevated CO2 had a greater effect on increasing soybean residue as compared with sorghum, and grain yield increases were greater for soybean followed by wheat and sorghum. Differences in sorghum and soybean residue production within the different management systems were small and variable. Cumulative residue inputs were increased by elevated CO2 and conservation management. Greater inputs resulted in a substantial increase in soil C concentration at the 0–5 cm depth increment in the conservation system under CO2‐enriched conditions. Smaller shifts in soil C were noted at greater depths (5–10 and 15–30 cm) because of management or CO2 level. Results suggest that with conservation management in an elevated CO2 environment, greater residue amounts could increase soil C storage as well as increase ground cover.  相似文献   

16.
Identifying soil microbial responses to anthropogenically driven environmental changes is critically important as concerns intensify over the potential degradation of ecosystem function. We assessed the effects of elevated atmospheric CO2 on microbial carbon (C) and nitrogen (N) cycling in Mojave Desert soils using extracellular enzyme activities (EEAs), community‐level physiological profiles (CLPPs), and gross N transformation rates. Soils were collected from unvegetated interspaces between plants and under the dominant shrub (Larrea tridentata) during the 2004–2005 growing season, an above‐average rainfall year. Because most measured variables responded strongly to soil water availability, all significant effects of soil water content were used as covariates to remove potential confounding effects of water availability on microbial responses to experimental treatment effects of cover type, CO2, and sampling date. Microbial C and N activities were lower in interspace soils compared with soils under Larrea, and responses to date and CO2 treatments were cover specific. Over the growing season, EEAs involved in cellulose (cellobiohydrolase) and orthophosphate (alkaline phosphatase) degradation decreased under ambient CO2, but increased under elevated CO2. Microbial C use and substrate use diversity in CLPPs decreased over time, and elevated CO2 positively affected both. Elevated CO2 also altered microbial C use patterns, suggesting changes in the quantity and/or quality of soil C inputs. In contrast, microbial biomass N was higher in interspace soils than soils under Larrea, and was lower in soils exposed to elevated CO2. Gross rates of NH4+ transformations increased over the growing season, and late‐season NH4+ fluxes were negatively affected by elevated CO2. Gross NO3 fluxes decreased over time, with early season interspace soils positively affected by elevated CO2. General increases in microbial activities under elevated CO2 are likely attributable to greater microbial biomass in interspace soils, and to increased microbial turnover rates and/or metabolic levels rather than pool size in soils under Larrea. Because soil water content and plant cover type dominates microbial C and N responses to CO2, the ability of desert landscapes to mitigate or intensify the impacts of global change will ultimately depend on how changes in precipitation and increasing atmospheric CO2 shift the spatial distribution of Mojave Desert plant communities.  相似文献   

17.
Elevated CO2 has been shown to stimulate plant productivity and change litter chemistry. These changes in substrate availability may then alter soil microbial processes and possibly lead to feedback effects on N availability. However, the strength of this feedback, and even its direction, remains unknown. Further, uncertainty remains whether sustained increases in net primary productivity will lead to increased long‐term C storage in soil. To examine how changes in litter chemistry and productivity under elevated CO2 influence microbial activity and soil C formation, we conducted a 230‐day microcosm incubation with five levels of litter addition rate that represented 0, 0.5, 1.0, 1.4 and 1.8 × litterfall rates observed in the field for aspen stand growing under control treatments at the Aspen FACE experiment in Rhinelander, WI, USA. Litter and soil samples were collected from the corresponding field control and elevated CO2 treatment after trees were exposed to elevated CO2 (560 ppm) for 7 years. We found that small decreases in litter [N] under elevated CO2 had minor effects on microbial biomass carbon, microbial biomass nitrogen and dissolved inorganic nitrogen. Increasing litter addition rates resulted in linear increase in total C and new C (C from added litter) that accumulated in whole soil as well as in the high density soil fraction (HDF), despite higher cumulative C loss by respiration. Total N retained in whole soil and in HDF also increased with litter addition rate as did accumulation of new C per unit of accumulated N. Based on our microcosm comparisons and regression models, we expected that enhanced C inputs rather than changes in litter chemistry would be the dominant factor controlling soil C levels and turnover at the current level of litter production rate (230 g C m−2 yr−1 under ambient CO2). However, our analysis also suggests that the effects of changes in biochemistry caused by elevated CO2 could become significant at a higher level of litter production rate, with a trend of decreasing total C in HDF, new C in whole soil, as well as total N in whole soil and HDF.  相似文献   

18.
Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C‐depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre‐experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ‘RothC.’ We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ~40–50 g C m?2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ~30 g C m?2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle.  相似文献   

19.
Elevated CO2 concentrations generally stimulate grassland productivity, but herbaceous plants have only a limited capacity to sequester extra carbon (C) in biomass. However, increased primary productivity under elevated CO2 could result in increased transfer of C into soils where it could be stored for prolonged periods and exercise a negative feedback on the rise in atmospheric CO2. Measuring soil C sequestration directly is notoriously difficult for a number of methodological reasons. Here, we present a method that combines C isotope labelling with soil C cycle modelling to partition net soil sequestration into changes in new C fixed over the experimental duration (Cnew) and pre‐experimental C (Cold). This partitioning is advantageous because the Cnew accumulates whereas Cold is lost in the course of time (ΔCnew>0 whereas ΔCold<0). We applied this method to calcareous grassland exposed to 600 μL CO2 L?1 for 6 years. The CO2 used for atmospheric enrichment was depleted in 13C relative to the background atmosphere, and this distinct isotopic signature was used to quantify net soil Cnew fluxes under elevated CO2. Using 13C/12C mass balance and inverse modelling, the Rothamsted model ‘RothC’ predicted gross soil Cnew inputs under elevated CO2 and the decomposition of Cold. The modelled soil C pools and fluxes were in good agreement with experimental data. C isotope data indicated a net sequestration of ≈90 g Cnew m?2 yr?1 in elevated CO2. Accounting for Cold‐losses, this figure was reduced to ≈30 g C m?2 yr?1 at elevated CO2; the elevated CO2‐effect on net C sequestration was in the range of≈10 g C m?2 yr?1. A sensitivity and error analysis suggests that the modelled data are relatively robust. However, elevated CO2‐specific mechanisms may necessitate a separate parameterization at ambient and elevated CO2; these include increased soil moisture due to reduced leaf conductance, soil disaggregation as a consequence of increased soil moisture, and priming effects. These effects could accelerate decomposition of Cold in elevated CO2 so that the CO2 enrichment effect may be zero or even negative. Overall, our findings suggest that the C sequestration potential of this grassland under elevated CO2 is rather limited.  相似文献   

20.
Enhanced sequestration of plant‐carbon (C) inputs to soil may mitigate rising atmospheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N) and phosphorous (P) deposition is uncertain. We couple isotope, soil C fractionation and mesocosm techniques to assess the sequestration of plant‐C inputs, and their partitioning into C pools with different sink potentials, under an experimental gradient of N and P deposition (0, 10, 30, 60 and 100 kg N ha?1 yr?1; and 0, 2, 6, 12 and 20 kg P ha?1 yr?1). We hypothesized that N deposition would increase sequestration, with the majority of the C being sequestered in faster cycling soil pools because N deposition has been shown to accelerate the turnover of these pools while decelerating the turnover of slower cycling pools. In contrast to this hypothesis, sequestration into all soil C pools peaked at intermediate levels of N deposition. Given that P amendment has been shown to cause a net loss of soil C, we postulated that P deposition would decrease sequestration. This expectation was not supported by our data, with sequestration generally being greater under P deposition. When soils were amended simultaneously with N and P, neither the shape of the sequestration relationship across the deposition gradient, nor the observed sequestration at the majority of the deposition rates, was statistically predictable from the effects of N and P in isolation. The profound nonlinearities we observed, both for total sequestration responses and the partitioning of C into soil pools with different sink potentials, suggests that the rates of N and P deposition to ecosystems will be the critical determinant of whether they enhance or decrease the long‐term sequestration of fresh plant‐C inputs to soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号