首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对大兴安岭北部樟子松树轮样品高向的年轮宽度和稳定碳同位素比率(δ13C)进行测定,分析了高向上δ13C的变化特征及其与年轮宽度的关系.结果表明: 在木质部全轮、早材和树皮内皮3种成分中,样品高向δ13C均呈现由顶部至基部先显著增加,在冠层底部达到最大值,再向下迅速减少至谷值的变化趋势.早晚材平均宽度比由基部至顶部增大.高向上δ13C年均值序列与轮宽年均值序列呈现较为明显的反向对应关系,与早晚材宽度比年均值序列呈现在冠层以上较为一致的变化趋势.样本高向上年轮宽度序列及δ13C序列均存在不同程度的显著差异,δ13C值的高向变化与年际变化基本处于同一量级.树体高向δ13C序列逐年变化趋势基本一致,同一高度盘的δ13C序列与年轮宽度序列基本呈负相关,但不同高度的显著性有所差异.
  相似文献   

2.
对大兴安岭北部两株樟子松(Pinus sylvestris var.mongolica)树轮样品的年内稳定碳同位素比率(δ13C)进行测定,结果表明:樟子松树轮年内δ13C值在不同生长阶段总体表现出每年生长季中期最高、早期次之、晚期最低的变化特征.δ13C的年内变化趋势在幼龄期至速生期变化剧烈,成熟期至衰老期相对平缓.从幼龄期至衰老期的整个生长阶段,同时期年内δ13C的变动幅度基本为晚材大于早材.幼龄期年内晚材的δ13C一直明显高于早材,而成熟期年内早晚材δ13C的差别逐渐减小,至衰老期年内晚材δ13C已低于早材且无显著差别.树轮δ13C的年内变化主要体现在生长季中后期,即早晚材之间的过渡段至晚材.年内不同时段的d13C序列与同时段的宽度去除生长趋势序列(去趋势序列)之间的相关性随生长季节的推移而逐渐降低.当年早材宽度与前一年晚材宽度显著正相关,当年早材δ13C序列与前一年晚材宽度和当年早材宽度的去趋势合并序列呈现较显著的负相关性,与前一年晚材δ13C序列或宽度去趋势序列之间均未表现出显著的相关性.分析结果表明:早材的形成很可能来源于前一年光合作用的产物,在利用树轮年内不同材质宽度或δ13C序列进行气候环境重建时需要考虑这一点.年内早材、过渡段和晚材三个时段的δ13C分别对应于4月下旬至6月中旬土壤湿度较大、温度上升较快的时期,6月下旬至7月中旬降水增加、温度达到最高而相对湿度降低的时期,以及7月下旬至9月中旬降水增加、温度下降而相对湿度较大的时期.  相似文献   

3.
樟子松树轮不同组分的稳定碳同位素分析   总被引:1,自引:0,他引:1  
对大兴安岭北部樟子松树轮中的全木、综纤维素和α纤维素3种组分按早晚材分别测定稳定碳同位素(δ13C)值,分析比较早晚材两种材质的3种组分δ13C值差异,探讨其对气候环境变化的响应。结果表明:从组分来看,樟子松树轮综纤维素的δ13C指标更接近于α纤维素;从材质来看,樟子松树轮晚材不同组分的稳定碳同位素信号对气候环境变化响应的一致性和敏感程度要大于早材。樟子松树轮晚材的综纤维素δ13C指标是研究过去气候或环境变化的理想载体,而α纤维素在提取过程中很可能丢失了部分气候信息。  相似文献   

4.
盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响   总被引:5,自引:0,他引:5  
以黑龙江省两个桑树品种(秋雨桑和泰来桑)为试验材料,研究了不同盐浓度下桑树幼苗生长、叶片水分关系和不同器官中离子的分布.结果表明:盐胁迫明显降低了桑树幼苗的植株高度和每株干物质量,且对新生叶片干质量的影响大于老叶片.随着盐胁迫的加重,两个品种桑树的叶片水势、渗透势、压力势和相对含水量明显下降,根、茎中Na+浓度明显增加,当外界NaCl浓度达到或超过150 mmol·L-1时,各器官中Na+浓度达到饱和.盐胁迫明显降低了两个品种桑树根、茎和叶片中K+ 和 Ca2+浓度,以及茎和叶片中Mg2+浓度,而对根中Mg2+浓度影响不大.Na+在根、茎和老叶中的区域化分布是两个品种桑树生长过程中表现出耐盐性的机理之一,而盐胁迫使叶片中的Ca2+、K+和Mg2+浓度降低,导致植株体内的离子亏缺,从而限制了植株的生长.  相似文献   

5.
树木年轮 (简称树轮 ) 气候学是监测与重建全球气候变化的重要方法之一。针叶树树轮的生长能反馈出气温的变化, 在高纬度地带尤为明显。该文分析了生长在我国最北部的兴安落叶松 (Larixgmelinii) 与樟子松 (Pinussylvestrisvar.mongolica) 的树轮密度和宽度的特性。落叶松最大密度、晚材平均密度、早晚材宽度和轮宽都远高于樟子松。樟子松的所有密度变量的样本方差都明显高于兴安落叶松, 宽度变量的样本方差却明显低于兴安落叶松。两树种密度变量的差值年表显著相关, 宽度变量之间没有显著相关关系。落叶松与樟子松的晚材密度的形成受 7、8月的最高温控制。另外, 樟子松的晚材还与生长季节的长短相关。落叶松的年轮宽度对生长季节开始前的温度敏感, 而樟子松的轮宽对气候变量没有很好的响应。结果表明, 落叶松与樟子松的树轮最大密度都与生长季后期的温度显著相关, 两树种的树轮信息对气候变化的重建有很大的潜力。  相似文献   

6.
树木水分利用效率特征存在地域及树种差异,北京山区作为华北土石山区典型森林生态系统,其主要树种侧柏水分利用效率(WUE)长期变化的研究未见报道.本研究通过测定侧柏树轮稳定碳同位素值(δ13C),计算年均水分利用效率(WUEi),分析其长期变化趋势及对环境条件变化的响应,并结合树轮宽度,探究侧柏WUEi与净固碳量的关系.结果表明: 1918—2013年期间,北京山区年均气温呈逐渐升高趋势,年降水量波动较大.在此期间,侧柏树轮δ13C逐渐减小,WUEi呈逐渐增大趋势.侧柏WUEi对气温变化的响应最为敏感,呈显著正相关关系,且WUEi对气温升高的响应敏感性大于气温降低.侧柏WUEi与年降水量的相关性不明显,该地区降水量不是影响侧柏WUEi的主要因素.侧柏去趋势树轮宽度值呈现先上升后下降趋势,近20年下降趋势明显.结合WUEi与环境因子的相关性分析,认为气温升高导致气孔导度(gs)降低,蒸腾量减少,同时增加了呼吸损耗,结果导致WUEi升高,但侧柏净固碳量减少,生长减缓.  相似文献   

7.
祁连山中部地区树轮宽度年表特征随海拔高度的变化   总被引:29,自引:4,他引:29  
利用采自祁连山中部地区不同海拔高度的四个采样点的青海云杉树轮样芯 ,分别建立了树木年轮宽度年表。发现随海拔高度的上升 ,树轮宽度指数的振幅减小 ,年表的平均敏感性降低 ,样本间的一致性也逐步减小 ,上限年表与气候因子的相关性最低 ,这与目前大家普遍认同的上限树木的生长受温度控制的概念并不一致。进一步的分析表明 ,年表的敏感性随海拔高度降低主要是由于该区域树木生长的限制因子是春季降水 ,而降水随海拔高度的升高而增加 ,从而使得春季降水对树木生长的限制作用随海拔升高而逐步减弱 ;生物学指标的测定结果表明 ,生长在高海拔的树木对环境的生态适应策略发生变化 ,其生理代谢维持在较低水平 ,以避免环境变化带来的影响 ,因此生长在高海拔的青海云杉对环境变化的敏感性较差。  相似文献   

8.
南京地区近二十年来雪松树轮的稳定碳同位素与气候重建   总被引:5,自引:0,他引:5  
对采自南京太平门的雪松(Cedrus deodara (Roxb.)Loud.)树轮α-纤维素的δ^13C与气候各要素的回归方程,并进行了气候重建,重建值与观测值吻合较好,表明南京地区树轮α-纤维素稳定碳同位素与5~7月平均降雨量及5~9月平均气温显著相关,重δ^13C对应于5~7月的少雨和5~9月的高温,轻δ^13C对应于5~7月的多雨和5~9月的低温,在一定程度上反映了东亚季风盛行区树木生长与  相似文献   

9.
大兴安岭北部樟子松树木生长与气候因子的关系   总被引:6,自引:1,他引:6       下载免费PDF全文
 在大兴安岭北部漠河(MH I、MH II 2个样点)、塔河蒙克山(MKS)、满归(MG)地区共采集樟子松(Pinus sylvestris var. mongolica)年轮样芯139个, 成功地建立了MH I、MH II、MKS和MG 4个样点的樟子松差值年表, 最长达377年(1631–2007年, 有效年表为1743–2007年)。樟子松年轮指数与气候因子的响应函数分析表明, 气温是这4个样点樟子松径向生长的主要限制因子。但4个样点限制其生长的月份有所差异, 漠河的2个样点樟子松年轮指数与6月气温负相关, 满归和塔河蒙克山樟子松年轮指数与前一年10月气温正相关。樟子松年表与区域气候的冗余分析(redundancy analysis, RDA)基本与响应函数分析的结果一致, 进一步验证了气温对大兴安岭北部樟子松生长的限制作用。该研究为全球变暖下大兴安岭北部樟子松林的经营管理及区域气候重建提供了基础数据。  相似文献   

10.
11.
利用采自额尔齐斯河上游6个采点的西伯利亚云杉(Picea obovata Ledeb)树轮样本建立了区域树轮宽度年表。与气候要素的相关分析表明,该地区树木径向生长主要受降水制约,区域树轮宽度年表与富蕴气象站上年7月至当年6月的降水总量相关显著。在此基础上建立了转换方程,重建了额尔齐斯河上游地区1722—2012年上年7月至当年6月的降水总量,方差解释量高达55.1%(调整自由度后为54.2%)。重建结果显示,该地区过去291年间存在9个降水偏多的时期和8个降水偏少的时期。降水重建序列还存在2.1a和3.2a的显著周期及2.3、21.6、24.3a的较显著周期,并且在1876—1877年及1983年前后发生了降水突变。空间相关分析表明,重建的上年7月至当年6月降水量对额尔齐斯河上游阿勒泰地区的降水量具有很好的空间代表性。此外,重建结果还与周边地区其他基于树轮资料重建的降水序列的干湿变化有较好的一致性。  相似文献   

12.
青藏高原东部典型高山植物叶片δ13C的季节变化   总被引:9,自引:1,他引:9  
通过对青藏高原高寒草甸生态系统28种高山植物叶片不同月份稳定碳同位素组成的测定,研究植物δ 13C值在不同季节变化及其与环境之间的关系,试图找出影响δ 13C值变化的关键环境因子.结果表明植物δ13C值在不同月份间有显著性差异(P<0.01),生长初期(6月)δ13C值明显高于生长末期(8月).植物的δ13C值变化主要是由于温度和降水引起的,随温度和降雨量降低而偏重.另外,不同生长期植物叶片的成熟度可能对植物δ13C的变化有一定的贡献.不同种植物稳定性碳同位素值变化差别很大,反应了不同植物对环境变化的不同响应.  相似文献   

13.
基于建立的大兴安岭库都尔地区兴安落叶松树轮宽度年表,分析了兴安落叶松树轮宽度年表与该区温度、降水和帕尔默干湿指数(PDSI)等主要气候因子之间的关系.结果表明:研究区5月和7月的温度与兴安落叶松年轮宽度变化呈极显著负相关关系(P0.01);虽然降水与年轮宽度变化没有表现出显著的相关关系,但6—8月PDSI与年轮宽度变化显著相关(P0.05),说明兴安落叶松的生长明显受区域水热条件共同控制,且以5月和7月最显著.兴安落叶松树轮宽度年表与诸如太平洋年代际振荡(PDO)等大尺度气候系统波动的低频系数和高频系数之间呈显著相关,说明太平洋气候系统的波动对该区树木径向生长具有显著影响.  相似文献   

14.
开都河流域天山桦树轮宽度年表的建立及其气候响应   总被引:1,自引:0,他引:1  
利用开都河流域中段采集的天山桦树芯样本,建立了这一采样点的树轮宽度年表。该年表的特征参数与其他地区已有的桦木树轮宽度年表相近,且能较好地反映研究区内天山桦树轮宽度变化的基本特征。该年表与研究区内雪岭云杉树轮宽度年表间的相关分析表明,两者在全频域、高频域及低频域上均存在显著正相关。树木生长气候响应分析结果显示,天山桦树轮宽度与降水量的相关则不显著;而与上年12月呈显著正相关(r= 0.346,P < 0.01,n=59),与当年6月的平均气温呈显著负相关(r=-0.312,P < 0.01,n=60)。该年表存在2.1、4.0a和~50a变化准周期,并且其与3月多元El Nio-Southern Oscillation (ENSO)指数存在相似的变化趋势。  相似文献   

15.
李文卿  江源  赵守栋  张凌楠  刘锬 《生态学报》2017,37(10):3365-3374
研究利用在六盘山地区采集的油松树轮样芯建立树轮宽度标准年表(STD),分别与不同长度时间单元(月、半月、旬)和多时间尺度的标准化降水指数(SPIn)序列进行相关性分析。油松标准年表与不同长度时间单元SPI的相关结果显示,较小的时间单元会使相关性表达更加精确,而时间单元过小则会因为数据波动性增大而导致相关关系弱化。因此,相较于月和旬,半月是相关性分析更为合适的时间单元长度。油松标准年表与多时间尺度SPI的相关结果显示,SPI多时间尺度的特性有助于揭示油松径向生长对不同时间尺度水分状况的响应特征,且油松在不同生长时期对于不同时间尺度水分状况具有相异的响应机制。在温度较低(0℃)的冬季,短时间内的降水并不利于树木生长,而长时间良好的水分储备会为树木生长季需水提供保障;在生长季前期,长时间良好的水分状况比短期内的降水更有利于树木的生长;在生长季,补给性水分和土壤水分都对树木生长起着至关重要的作用。  相似文献   

16.
千山油松年轮宽度年表的建立及其与气候的关系   总被引:5,自引:0,他引:5  
以千山油松为样本,建立了年轮宽度标准化年表、差值年表和自回归年表.结果表明,油松年轮宽度与5—7和9—11月温度指标的相关性较高,且与低温呈正相关,其中与7月的极端最低温、9月的平均最低温显著相关.3种年表与上年12月和当年1月的极端最低温、1月的平均最低温呈显著相关,且其与全年、上年12月、当年5月的降水量显著相关,与4月的降水量极显著相关.油松与水汽压、相对湿度的月和年指标均有较强的相关性.蒸发的年指标和绝大部分月指标对油松生长具有负效应,其中4—7月最明显.油松年表的窄化突变佐证了1800年以来的30次主要的旱灾年历史记录.千山油松的生长受全球或半球尺度气候变化的影响.年表与太阳活动存在显著的11、23和50年左右的公共周期,与地磁指标在10、20和45年左右存在共同的周期变化.  相似文献   

17.
广东阳春现代樟树树轮宽度变化及其对气候因子的响应   总被引:5,自引:0,他引:5  
树木年轮方法定年准确、连续性强、分辨率高和易于获取复本等 ,成为全球气候变化研究的重要手段之一。在热带、亚热带地区 ,受树木生理特性的影响 ,树轮研究工作开展较少。通过广东阳春过渡热带现代樟树树木年轮宽度的变化 ,发现秋季降水是影响研究区樟树生长的重要因子。树轮记录的准 4~ 4 .92 a周期的树轮指数变化可能与厄尔尼诺的周期有关 ,即厄尔尼诺引起气候变化对树木生长产生影响。尽管樟树生长快 ,树轮不清晰 ,交叉定年困难 ,但由于研究区存在明显的旱季 ,樟树树轮仍然能够在一定程度上反映气候条件的影响。  相似文献   

18.
近70年来黄土高原典型植物δ13C值变化研究   总被引:11,自引:0,他引:11       下载免费PDF全文
对黄土高原地区 4种典型C3 植物狼牙刺 (Sophoraviciifolia) 、辽东栎 (Quercusliaotungensis) 、虎榛子 (Os tryopsisdavidiana) 和酸枣 (Zizyphusjujubavar.spinosa) 样品稳定性碳同位素组分 (δ13 C) 进行分析, 研究了从 2 0世纪 30年代至今近 70年中不同年代植物δ13 C值的变化。结果表明, 在近 70年中, 4种植物δ13 C值变化范围为- 2 5.0 5‰~ - 2 9.75‰, 平均值为 - 2 7.0 4‰。 4种植物叶片δ13 C值均呈下降趋势, 表明随气候环境变化, 近 70年4种植物的水分利用效率 (WUE) 均呈降低趋势。但不同植物叶片δ13 C值下降幅度不同 :狼牙刺和辽东栎叶片δ13 C值下降非常明显, 虎榛子叶片δ13 C值下降也较明显, 而酸枣叶片δ13 C值下降不明显。 4种植物δ13 C值的降低率分别为 14.6 5 %、14.4 6 %、11.99%和 2.4 4 %, 说明不同植物对气候环境因子的敏感性不同, 具有不同的适应环境变化的策略, 酸枣是 4种植物中耐旱能力较强, WUE较高的物种。  相似文献   

19.
北亚热带马尾松年轮宽度与NDVI的关系   总被引:2,自引:0,他引:2  
北亚热带地处暖温带向亚热带的过渡地区,对环境变化较为敏感。因此,研究北亚热带马尾松年轮宽度与森林NDVI的关系对于揭示陆地生态系统对全球气候变化的响应具有重要意义。以马尾松自然分布北界的南郑县和河南省鸡公山自然保护区为研究地点,利用北亚热带马尾松年轮宽度指数和1982-2006年逐月NOAA/AVHRR的归一化植被指数(NDVI)数据及气候数据,在分析年轮宽度及NDVI与气候因子关系的基础上,重点讨论了北亚热带马尾松径向生长与NDVI之间的关系。结果表明:北亚热带NDVI受水热条件的共同控制,其中与月均温相关性较强,且以正相关为主,与月降水量和干旱度指数多负相关;马尾松的径向生长与上一生长季的温度呈正相关,降水和干旱度指数为负相关,当年生长季内的温度和降水以促进作用为主,而与干旱度指数的关系在两地区内相反;南郑县和鸡公山地区年轮宽度与NDVI年值之间关系均不显著(P>0.05)。单月来讲,南郑县3、4、12月NDVI值与年表显著相关,鸡公山地区9月份的NDVI值与差值年表RES相关性最大;南郑县树木生长受温度影响最大,而鸡公山地区受温度和降水的综合作用。因此,在北亚热带地区,长时间序列的年轮宽度数据并不能很好反应NDVI的长期变化,利用树轮宽度指数来重建北亚热带地区NDVI需要进一步研究。  相似文献   

20.
通过对中国北方C3草本植物稳定性碳同位素的测定以及有关该区植被碳同位素资料的收集,共获取了47个样点的地理位置、气候因子和325个植物样品的碳同位素数据;计算了中国北方不同气候分区的湿润指数,分析了C3草本植物δ13C值的空间特征以及与湿润指数等环境因子之间的关系。在所调查的范围内,中国北方地区C3草本植物δ13C值的分布区间为-29.9‰--25.4‰,平均值为-27.3‰。C3草本植物δ13C的平均值从半湿润地区到半干旱地区再到干旱地区显著变重;3个气候分区植物δ13C值的变化范围分别是-29.9‰--26.7‰(半湿润区)、-28.4‰--25.6‰(半干旱区)和-28.0‰--25.4‰(干旱区)。一元回归分析表明,各气候分区C3草本植物δ13C值与湿润指数的关系存在差异,在半干旱区、半湿润区和整个北方地区,C3草本植物δ13C值与湿润指数均呈显著线性负相关(P〈0.05),随着湿润指数的增加,C3植物δ13C平均值均变轻,但下降幅度不同。而在北方干旱气候区内,C3草本植物δ13C与湿润指数呈显著正相关(P〈0.05),湿润指数每升高0.1,植物δ13C平均值增加1.3‰。年均温度可能是决定该区内各样点湿润指数和C3植物对13C分馏能力差别的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号