首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The sequence of structural changes that occur during synaptic vesicle exocytosis was studied by quick-freezing muscles at different intervals after stimulating their nerves, in the presence of 4-aminopyridine to increase the number of transmitter quanta released by each stimulus. Vesicle openings began to appear at the active zones of the intramuscular nerves within 3-4 ms after a single stimulus. The concentration of these openings peaked at 5-6 ms, and then declined to zero 50-100 ms late. At the later times, vesicle openings tended to be larger. Left behind at the active zones, after the vesicle openings disappeared, were clusters of large intramembrane particles. The larger particles in these clusters were the same size as intramembrane particles in undischarged vesicles, and were slightly larger than the particles which form the rows delineating active zones. Because previous tracer work had shown that new vesicles do not pinch off from the plasma membrane at these early times, we concluded that the particle clusters originate from membranes of discharged vesicles which collapse into the plasmalemma after exocytosis. The rate of vesicle collapse appeared to be variable because different stages occurred simultaneously at most times after stimulation; this asynchrony was taken to indicate that the collapse of each exocytotic vesicle is slowed by previous nearby collapses. The ultimate fate of synaptic vesicle membrane after collapse appeared to be coalescence with the plasma membrane, as the clusters of particles gradually dispersed into surrounding areas during the first second after a stimulus. The membrane retrieval and recycling that reverse this exocytotic sequence have a slower onset, as has been described in previous reports.  相似文献   

3.
4.
5.
N-CAM at the vertebrate neuromuscular junction   总被引:27,自引:22,他引:5  
We have detected the neural cell adhesion molecule, N-CAM, at nerve-muscle contacts in the developing and adult mouse diaphragm. Whereas we found N-CAM staining with fluorescent antibodies consistently to overlap with the pattern of alpha-bungarotoxin staining at nerve-muscle contacts both during development and in the adult, we observed N-CAM staining on the surfaces of developing myofibers and at much lower levels on adult myofibers. Consistent with its function, N-CAM was also detected on axons and axon terminals. Immunoblotting experiments with anti-N-CAM antibodies on detergent extracts of embryonic (E) diaphragm muscle revealed a polydisperse polysialylated N-CAM polypeptide, which in the adult (A) was converted to a discrete form of Mr 140,000; this change, called E-to-A conversion, was previously found to occur in different neural tissues at different rates. The Mr 140,000 component was not recognized by monoclonal antibody anti-N-CAM No. 5, which specifically recognizes antigenic determinants associated with N-linked oligosaccharide determinants on N-CAM from neural tissue. The relative concentration of the Mr 140,000 component prepared from diaphragm muscle increased during fetal development and then decreased sharply to reach adult values. Nevertheless, expression of N-CAM in muscle could be induced after denervation: one week after the sciatic nerve was severed, the relative amount of N-CAM increased dramatically as detected by immunoblots of extracts of whole muscle. Immunofluorescent staining confirmed that there was an increase in N-CAM, both in the cell and at the cell surface; at the same time, however, staining at the motor endplate was diminished. Our findings indicate that, in muscle, in addition to chemical modulation, cell-surface modulation of N-CAM occurs both in amount and distribution during embryogenesis and in response to denervation.  相似文献   

6.
7.
F A Wali 《Life sciences》1985,37(17):1559-1561
Diazepam (Valieum, Roche) is a centrally-acting drug belonging to the benzodiazepine group of tranquillisers with anxiolytic, hypnotic, anti-convulsant and myorelaxant properties (1). It has been reported that in addition to its central effects (1), diazepam also produces relaxation of the skeletal muscle (2, 3). The myorelaxation produced by diazepam is thought to be of central origin (2), although at least some of the effects is due to a peripheral effect of diazepam, i.e. at the neuromuscular junction.Although the effects and interactions of diazepam with neuromuscular blocking agents have been studied by many workers (2–12), the results reported are somehow are controversial (4–8). In sum, diazepam can either enhance or depress neuromuscular transmission, the effect being dependent on the concentration and the type of the preparation used. A multi-site of action of diazepam may provide an explanation for some of the anomalies reported in the literature.  相似文献   

8.
《Journal of Physiology》1998,92(3-4):153-155
Synapses obtained in vitro in a system of co-culture of muscle cells and neurons are of embryonic type. We prepared a monoclonal antibody (6.17) which recognizes a molecule synthesized by Schwann cells and used it to show that the main characteristics of maturity (decrase in number of synapses, appearance of junctional folds, and suppression of butyrylcholinesterase expression) are under the control of Schwann cells. In addition, Schwann cells have the capacity to aggregate the acetylcholine receptors in myotube cultures.  相似文献   

9.
10.
Changes in the effective membrane resistance of the abductor muscle of the dactylopodite of the crayfish were used to indicate changes in the GABA concentration in the synaptic cleft. Following bath application of GABA (10?5 to 5 × 10?5M), the muscle membrane resistance decreased and then increased slowly over the next few minutes. Renewing the solution or stirring the bath restored the GABA effect. Higher GABA concentrations produced a large stable decrease in membrane resistance. An active uptake system for GABA in the junctional region is suggested by the observation that the slow increase in membrane resistance following GABA application was decreased by cooling to 2°C or by the addition of known GABA uptake blockers such as L -DABA, β-guanidinopropionic acid, or nipecotic acid. The transport inhibitors, PCMBS and chlorpromazine, produced irreversible decreases in muscle membrane resistance, which precluded examining their effects on GABA inactivation. The decrease in GABA effect was not dependent on the external sodium concentration or on the degree of receptor activation. Nipecotic acid, which blocked GABA inactivation, did not affect the decay of the neurally evoked inhibitory junctional potential.  相似文献   

11.
The difference in the decay time constants of multiquantal endplate currents (EPC) produced by presenting paired stimuli 100 msec apart was measured during experiments on transversely cut neuromuscular preparations of the frog sartorius muscle. When acetylcholinesterase was inhibited by 3×10–6 M prostigmine, decay time of the 2nd EPC (2) was 39±8% longer than that of the first (1) due to postsynaptic potentiation. It was found that degree of potentiation was not affected by membrane potential level within the –30 to –120 mV range. Several effects were produced by a drop in temperature: an increase in EPC decay time constant and in that of miniature endplate currents (MEPC) in particular, a slight drop in MEPC amplitude, and a reduction in EPC quantal content. By comparing paired EPC of equal quantal content at different temperatures it was found that potentiation was more pronounced at 12°C than at 22°C and the temperature coefficient Q10 at which 2 exceeds 1 was 2.0±0.2 (n=7). The processes determining postsynaptic potential are clearly not voltage-dependent but have a complex dependence on temperature. Quantal content of EPC falls with reduced temperature, thereby restraining potentiation, while helping to retain residual transmitter activity.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Kurashov Medical Institute, Kazan'. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 512–518, July–August, 1986.  相似文献   

12.
13.
1. The actions of the calcium channel blocker verapamil were studied at the neuromuscular junction of the frog Rana pipiens. 2. In the presence of 50 microM verapamil, subthreshold endplate potentials were produced, and the quantal content was reduced by a factor of 3. 3. Verapamil (10-50 microM) also reduced the postjunctional membrane sensitivity as measured by (a) carbachol iontophoresis and (b) miniature endplate potential amplitude. In addition, verapamil had a strong inhibitory effect on the postjunctional membrane response to repetitive iontophoretic application of carbachol. 4. Thus, verapamil has both pre- and postsynaptic actions at the neuromuscular junction.  相似文献   

14.
Synaptic vesicle pools at the frog neuromuscular junction   总被引:12,自引:0,他引:12  
We have characterized the morphological and functional properties of the readily releasable pool (RRP) and the reserve pool of synaptic vesicles in frog motor nerve terminals using fluorescence microscopy, electron microscopy, and electrophysiology. At rest, about 20% of vesicles reside in the RRP, which is depleted in about 10 s by high-frequency nerve stimulation (30 Hz); the RRP refills in about 1 min, and surprisingly, refilling occurs almost entirely by recycling, not mobilization from the reserve pool. The reserve pool is depleted during 30 Hz stimulation with a time constant of about 40 s, and it refills slowly (half-time about 8 min) as nascent vesicles bud from randomly distributed cisternae and surface membrane infoldings and enter vesicle clusters spaced at regular intervals along the terminal. Transmitter output during low-frequency stimulation (2-5 Hz) is maintained entirely by RRP recycling; few if any vesicles are mobilized from the reserve pool.  相似文献   

15.
16.
17.
Tam  Siu Lin  Gordon  Tessa 《Brain Cell Biology》2003,32(5-8):961-974
This review considers the relative roles of sprouting stimuli, perisynaptic Schwann cells and neuromuscular activity in axonal sprouting at the neuromuscular junction in partially denervated muscles. A number of sprouting stimuli, including insulin-like growth factor II, which are generated from inactive muscle fibers in partially denervated and paralyzed skeletal muscles, has been considered. There is also evidence that perisynaptic Schwann cells induce and guide axonal sprouting in adult partially denervated muscles. Excessive neuromuscular activity significantly reduces bridging of perisynaptic Schwann cell processes between innervated and denervated endplates and thereby inhibits axonal sprouting in partially denervated adult muscles. Elimination of neuromuscular activity is also detrimental to sprouting in these muscles, suggesting that calcium influx into the nerve is crucial for axonal sprouting. The role of neuromuscular activity in axonal sprouting will be considered critically in the context of the roles of sprouting stimuli and perisynaptic Schwann cells in the process of axonal sprouting.  相似文献   

18.
Activity and synapse elimination at the neuromuscular junction   总被引:2,自引:0,他引:2  
The neuromuscular junction undergoes a loss of synaptic connections during early development. This loss converts the innervation of each muscle fiber from polyneuronal to single. During this change the number of motor neurons remains constant but the number of muscle fibers innervated by each motor neuron is reduced. Evidence indicates that a local competition among the inputs on each muscle fiber determines which inputs are eliminated. The role of synapse elimination in the development of neuromuscular circuits, other than ensuring a single innervation of each fiber, is unclear. Most evidence suggests that the elimination plays little or no role in correcting for errant connections. Rather, it seems that connections are initially highly specific, in terms of both which motor neurons connect to which muscles and which neurons connect to which particular fibers within these muscles. A number of attempts have been made to determine the importance of neuromuscular activity during early development for this rearrangement of synaptic connections. Experiments reducing neuromuscular activity by muscle tenotomy, deafferentation and spinal cord section, block of nerve impulse conduction with tetrodotoxin, and the use of postsynaptic and presynaptic blocking agents have all shown that normal activity is required for normal synapse elimination. Most experiments in which complete muscle paralysis has been achieved show that activity may be essential for the occurrence of synapse elimination. Furthermore, experiments in which neuromuscular activity has been augmented by external stimulation show that synapse elimination is accelerated. A plausible hypothesis to explain the activity dependence of neuromuscular synapse elimination is that a neuromuscular trophic agent is produced by the muscle fibers and that this production is controlled by muscle-fiber activity. The terminals on each fiber compete for the substance produced by that fiber. Inactive fibers produce large quantities of this substance; on the other hand, muscle activity suppresses the level of synthesis of this agent to the point where only a single synaptic terminal can be maintained. Inactive muscle fibers would be expected to be able to maintain more nerve terminals. The attractiveness of this scheme is that it provides a simple feedback mechanism to ensure that each fiber retains a single effective input.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号