首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Historically in Puget Lowland rivers, wood jams were integral to maintaining an anastomosing channel pattern and a dynamic channel–floodplain connection; they also created deep pools. In the late 1800s, wood was removed from most rivers, rivers were isolated from their floodplains, and riparian forests were cut down, limiting wood recruitment. An exception to this history is an 11-km-long reach of the Nisqually River, which has natural banks and channel pattern and a mature floodplain forest. We use field and archival data from the Nisqually River to explore questions relevant to restoring large rivers in the Pacific Northwest and other forested temperate regions. In particular, we focus on the relation between recovery of in-channel wood accumulations and valley bottom forest conditions and explore implications for river restoration strategies. We find that restoring large rivers depends on establishing riparian forests that can provide wood large enough to function as key pieces in jams. Although the frequency of large trees in the Nisqually valley bottom in 2000 is comparable with that of 1873 land surveys, many formerly more abundant Thuja plicata (western red cedar) were cut down in the late 1800s, and now hardwoods, including Populus trichocarpa (black cottonwood) and Acer macrophyllum (bigleaf maple), are also abundant. Pseudotsuga menziesii (Douglas fir) and fast-growing P. trichocarpa commonly form key pieces that stabilize jams, suggesting that reforested floodplains can develop naturally recruited wood jams within 50 to 100 years, faster than generally assumed. Based on the dynamic between riparian forests, wood recruitment, and wood jams in the Nisqually River, we propose a planning framework for restoring self-sustaining dynamic river morphology and habitat to forested floodplain rivers.  相似文献   

3.
Geomorphic thresholds in riverine landscapes   总被引:12,自引:1,他引:12  
1. Rivers are subject to thresholds of several types that define significant changes in processes and morphology and delimit distinctive riverine landscapes and habitats. Thresholds are set by the conditions that govern river channel process and form, amongst which the most important are the flow regime, the quantity and calibre of sediment delivered to the channel, and the topographic setting (which determines the gradient of the channel). These factors determine the sediment transport regime and the character of alluvial deposits along the channel.
2. Changes occur systematically along the drainage system as flow, gradient and sediment character change, so a characteristic sequence of morphological and habitat types – hence of riverine landscapes – can be described from uplands to distal channels. The sequence is closely associated with stream competence to move sediment and with bank stability.
3. The paper proposes a first order classification of river channel and landscape types based on these factors. The riverine landscape is affected seasonally by flow thresholds, and further seasonal thresholds in northern rivers are conditioned by the ice regime.
4. It is important to understand geomorphic thresholds in rivers not only for the way they determine morphology and habitat, but because human activity can precipitate threshold crossings which change these features significantly, through either planned or inadvertent actions. Hence, human actions frequently dictate the character of the riverine landscape.  相似文献   

4.
River beads refer to retention zones within a river network that typically occur within wider, lower gradient segments of the river valley. In lowland, floodplain rivers that have been channelized and leveed, beads can also be segments of the river in which engineering has not reduced lateral channel mobility and channel-floodplain connectivity. Decades of channel engineering and flow regulation have reduced the spatial heterogeneity and associated ecosystem functions of beads occurring throughout river networks from headwaters to large, lowland rivers. We discuss the processes that create and maintain spatial heterogeneity within river beads, including examples of beads along mountain streams of the Southern Rockies in which large wood and beaver dams are primary drivers of heterogeneity. We illustrate how spatial heterogeneity of channels and floodplains within beads facilitates storage of organic carbon; retention of water, solutes, sediment, and particulate organic matter; nutrient uptake; biomass and biodiversity; and resilience to disturbance. We conclude by discussing the implications of river beads for understanding solute and particulate organic matter dynamics within river networks and the implications for river management. We also highlight gaps in current understanding of river form and function related to river beads. River beads provide an example of how geomorphic understanding of river corridor form and process can be used to restore retention and resilience within human-altered river networks.  相似文献   

5.
Incised river channels are dynamic components of fluvial systems, represent geomorphic degradation, and are encountered worldwide. Ecological effects of incision can be far‐reaching, affecting habitat availability and channel processes. Although incision can reflect habitat degradation, some studies suggest that important in‐stream habitats do not differ with the degree of incision. Therefore, we tested whether in‐stream habitat variables that are important to imperiled fishes differ in river reaches with varying degrees of incision. Because incision (measured using entrenchment ratio) had no discernable effect on in‐stream habitat characteristics (i.e., proportion fines, gravel, cobble, and macrophyte occurrence and length), we expanded our analysis to assess the effects of 29 additional geomorphic variables on in‐stream habitat. These analyses indicated that bank height, bed mobility, D84, cross‐sectional area, bankfull width, and wetted perimeter accounted for 42% of macrophyte occurrence and 64% of macrophyte length variance. Postflood surveys indicated that macrophyte occurrence on cobble declined as bank height and bed mobility increased, and sediment size decreased, suggesting that sediment size and bed mobility have a stronger influence on in‐stream habitat than incision. Although channel incision often indicates environmental degradation, important aspects of habitat are not described by this measurement. Strategies that depend on incision to identify restoration sites may have limited habitat benefits in Southeastern Piedmont streams and rivers. Instead, landscape or shoal‐scale restoration approaches that increase coarse sediment proportions may increase macrophyte occurrence, length, and persistence. Sediment budgets that identify coarse and fine sediment sources and transport may be useful to prioritize restoration approaches.  相似文献   

6.
7.
Microfaunal samples were collected from within the channels of three rivers in north eastern Victoria, Australia (the Murray, Ovens and Broken Rivers) as a component of a study examining the effects of flow on the biota of lowland rivers in Australia. Samples were collected from the water column of the river channel and slackwaters and from the layer of water immediately above the bottom sediment of the slackwaters. There was no connectivity between the river channel and the floodplain wetlands for all three rivers during the sampling period. Substantial numbers of microfauna were resident in the slackwaters of all three rivers, with the greatest densities occurring close to the bottom sediment, with densities often exceeding 1000 animals l−1 whereas in the plankton samples densities were usually less than 500 animals l−1. The presence of large and diverse microfaunal communities and the lack of connectivity between the river channel and associated floodplain wetland indicate that these communities are capable of persisting and recruiting within riverine channel slackwaters.  相似文献   

8.
Aim To determine the degree to which rivers within the south‐eastern US Coastal Plain show a predictable spatial distribution of floodplain tree species along each point bar of river bends in relation to elevation and/or soil texture, as seen on the Bogue Chitto River, Louisiana, USA. Also, to understand spatial patterns of tree species on land created during river‐bend migration, and to interpret which physical characteristics of rivers predict this pattern of vegetation. Location The south‐eastern US Coastal Plain. Methods Ten randomly selected rivers within a portion of the region were studied. At each of 10 river bends per river, a census of trees and shrubs was taken and elevation and soil texture were measured at upstream, mid‐ and downstream locations along the forest–point bar margin. To identify physical characteristics of rivers that are predictive of patterns of tree species along point bars, aerial photographs, hydrographs and field data were analysed. Results Tree species composition varied predictably among the three point bar locations, corresponding to an elevation gradient on each bar, on seven of 10 rivers. Species occupying a given point bar location on one river usually occupied the same location on other rivers, in accordance with species‐elevation associations identified in past studies of floodplain forests. Multivariate analysis of river characteristics suggested that rivers failing to show the expected pattern were those with relatively low stream energy and geomorphic dynamics and/or those with hydrological regimes altered by upstream dams. Main conclusions A distinct pattern of streamside forest community structure is related to fluvial geomorphic processes characterizing many rivers within the south‐eastern US Coastal Plain. Characteristics of rivers required to promote the predicted pattern of tree species include a single, meandering channel with point bars; an intermediate level of stream energy; a natural hydrological regime; and location in a biome where a large number of tree species are capable of colonizing point bars.  相似文献   

9.
River channels tend to a dynamic equilibrium driven by the dynamics of water and sediment discharge. The resulting fluctuating pattern of channel form is affected by the slope, the substrate erodibility, and the vegetation in the river corridor and in the catchment. Geomorphology is basic to river biodiversity and ecosystem functioning since the channel pattern provides habitat for the biota and physical framework for ecosystem processes. Human activities increasingly change the natural drivers of channel morphology on a global scale (e.g. urbanization increases hydrological extremes, and clearing of forests for agriculture increases sediment yield). In addition, human actions common along world rivers impact channel dynamics directly, e.g. river regulation simplifies and fossilizes channel form. River conservation and restoration must incorporate mechanisms of channel formation and ecological consequences of channel form and dynamics. This article (1) summarizes the role of channel form on biodiversity and functioning of river ecosystems, (2) describes spatial complexity, connectivity and dynamism as three key hydromorphological attributes, (3) identifies prevalent human activities that impact these key components and (4) analyzes gaps in current knowledge and identifies future research topics.  相似文献   

10.
In lowland areas, such as the glacial landscapes of eastern Germany, sand‐bed streams are the most common stream type. They have low gradients and their hydrological regime is often subdued due to the frequent interruption by lakes. Very few is known about the influence of woody debris in these streams, since nearly all previous studies are from high‐gradient conditions, where streams have coarse bed sediments and harsh hydrological regimes. The research objectives of this study were first to assess the quasi‐natural quantity and quality of wood in a lowland sand‐bed stream and second to understand the influence of wood on the channel morphology and the flow patterns at base‐flow. The three‐dimensional stream bed relief was surveyed by electronic distance measurement. The position and the size of large woody debris was assessed by close‐up photography. An acoustic Doppler velocimeter was used to record the patterns of flow velocity and turbulence. Overlay and analysis of the spatial data was done using a Geographic Information System. The standing stock of wood was 1.9 m3 and 39 woody elements per 100 m2 of stream bed. The flow pattern was clearly controlled by the wood. Woody elements elevated above the stream bed deflected flow and locally caused strong secondary current, high turbulence, and scour of the stream bed at baseflow. Wood resting directly on the stream bed, which contributed the majority of the wood inside the bank‐full channel, determined the roughness of the stream bed. Near‐bed flow patterns observed were isolated roughness flow and wake interference flow, which was registered inside the accumulations of wood. 68% of the stream bed had shear stress above critical. Hence, the secondary morphological structures of the sand‐bed were controlled at base‐flow by the flow which was determined by the woody debris distribution.  相似文献   

11.
The aim of the paper is to present two independent approaches to the issue of preservation of former meander loops based on examples of hydrotechnical works undertaken along meandering sections of the Drw?ca and ?yna Rivers (N Poland) in the 20th century. Except for significant changes in morphology of both rivers (shortened lengths, decrease in sinuosities and increase in channel slopes), the direct effect of their straightening is numerous cut-off channels. Hydrotechnical works performed along the middle section of the ?yna River maintained the connections between the active river channel and downstream arms of former meander loops. Thanks to that connection, the new water bodies successfully function as biogeochemical filters in the river valley and create favorable conditions for biodiversity. The consequence of the channelization of the Drw?ca River is numerous cut-offs separated from the river channel and characterized by advanced processes of eutrophication.The water quality data collected within the period of 2004–2006 showed significant consequences of the performed works for the man-made ecosystems. The comparison of water quality in semi-lotic and lentic cut-offs in relation to water in their parent rivers showed statistical differences. Significantly high concentrations of orthophosphates, total phosphorus and sulphates as well as the lowest concentrations of nitrates characterized lentic environments along the Drw?ca River. Besides hydrological connectivity, an important factor responsible for transformation processes of the man-made ecosystems is hydrological regime. It influences ecological integrity in floodplain ecosystems during high water levels and largely controls their chemical characteristics and aeration. Flood disturbances for lentic water bodies may renew connectivity and reset succession, can hold up the trend towards terrestrialization and disappearance of man-made water bodies in the floodplain. However, in light of the conducted studies, the maintenance of the connection between the downstream arm of the cut-off channel and the river is highly recommended.  相似文献   

12.
森林溪流倒木生态学研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
溪流倒木是指在河流中长度大于1 m、直径大于10 cm的死木。溪流倒木在森林河流中(特别是较小的河流中)是一个常见且重要的结构成分。该文综述了近30年溪流倒木的研究成果(主要来自北美),总结溪流倒木在河流形态、碳循环、泥沙与养分拦截、水生生境的形成、水生生物多样性等方面的生态功能,倒木的时间动态性与空间变异性,以及干扰(包括自然干扰与人为干扰)与倒木存留量及分布的关系。此外,该文也探讨了溪流倒木的生态管理模式及未来研究方向。大量的研究证明,溪流倒木对森林水生生态系统具有重要的生态功能,但它的存留量、分布以及它的生态意义因所研究的森林生态系统、河流大小不同而异。随着河流宽度的增加, 倒木的存留量及它对河流的影响减少,并且倒木的分布以单个为主变为聚集体为主。单个倒木的直径则随河流宽度增加而增大。倒木也呈现十分明显的时间动态性,而这种动态往往是由大规模毁灭性的森林干扰(火、风倒等)所驱动的。研究倒木的时空变异性及自然干扰与人为干扰对倒木的不同影响对于保持倒木的生态功能是十分必要的。该文还对中国开展溪流倒木的生态研究提出一些建议。  相似文献   

13.
Multiple-scale assessments of fish-habitat associations are limited despite the fact that riverine fish assemblages are influenced by factors operating over a range of spatial scales. A method for assessing fish-habitat assemblages at multiple scales is proposed and tested in a large Australian dryland river, the Barwon–Darling River. Six discrete mesohabitat types (large wood, smooth bank, irregular bank, matted bank, mid-channel and deep pool) nested within 10 km long river reaches were sampled. Individual reaches were, in turn, nested within four larger geomorphological zones, previously identified along the river. Fish assemblages varied significantly between mesohabitat types and at different spatial scales. Golden perch (Macquaria ambigua), Murray cod (Maccullochella peelii peelii) and common carp (Cyprinus carpio) were strongly associated with large wood, but golden perch and Murray cod exhibited higher habitat specificity than carp. Bony herring (Nematalosa erebi) were more common in shallow edgewater habitats. At the river-scale, regional differences in the fish assemblage occurred at scales closely corresponding to geomorphological zones and these differences were associated with changes in the relative abundance of species rather than the addition or replacement of species. The proposed hierarchical framework improves the efficiency of fish surveys in large rivers by viewing meso-scale fish-habitat associations in the context of larger-scale geomorphological processes.  相似文献   

14.
15.
Small hydropower plants (SHP) affect river flow and sediment transport and thus impact river morphology. Eight hydropower schemes were studied along the meandering middle and lower reaches of Aragón River (Spain) to assess their effects on channel morphology and sediment dynamics from 1927 to 2010. GIS tools were used to measure changes in fluvial surfaces, channel planform and lateral and vertical dynamics. Three periods (early, middle and late twentieth century) were analysed to discern the effects of the main pressures, such as changes in land use, large reservoirs upstream and SHPs. Results were combined with field and topographical measurements and hydrological analysis. Active channel width and channel migration suffered a clear reduction in the whole period. They started as a consequence of land cover changes in the drainage basin, but their speed increased after a large reservoir was built upstream. More recent changes occurred since most of the SHPs were put into operation in the 1990s, especially in their short-circuited reaches and in the four more downstream ones. These changes are interpreted as a consequence of reduced discharge, transitory sediment trapping and reactivation of sediment transport after weirs became filled as well as by the impact of flood hydrology.  相似文献   

16.
Summary

Invasion of the riparian zone by alien vegetation is recognised as a serious problem in many areas of South Africa. Vegetation is a dynamic component of river channels. It is an important control variable affecting channel form whereas the flow and sediment regime influences vegetation growth. Wherever alien vegetation invades the riparian zone it can be expected that there will be some impact on the physical structure of the riparian habitat. This paper reviews the effect of riparian vegetation on channel processes and channel form and discusses the implications of the invasion of riparian zones by alien vegetation. Woody species in particular are seen as having a significant potential for inducing channel modification, whilst their removal could lead to significant channel instability and mobilisation of sediment. The need for further research into the impact of alien vegetation on the geomorphology of South African river channels is stressed.  相似文献   

17.
Ten years'' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.  相似文献   

18.
1. Riverscapes consist of the main channel and lateral slackwater habitats along a gradient of hydrological connectivity from maximum connection in main channel habitats to minimum connection in backwaters. Spatiotemporal differences in water currents along this gradient produce dynamic habitat conditions that influence species diversity, population densities and trophic interactions of fishes. 2. We examined the importance of lateral connectivity gradients for food web dynamics in the Upper Mississippi River during spring (high flow, moderately low temperatures) and summer (low flow, higher temperatures). We used literature information and gut contents analyses to determine feeding guilds and stable isotope analysis to estimate mean trophic position of local fish assemblages. During June and August 2006, we collected over 1000 tissue samples from four habitats (main channel, secondary channels, tertiary channels and backwaters) distributed within four hydrologic connectivity gradients. 3. Mean trophic position differed among feeding guilds and seasons, with highest values in spring. Mean trophic position of fish assemblages, variability in trophic position and food chain length (maximum trophic position) of the two dominant piscivore species (Micropterus salmoides and M. dolomieu) in both seasons were significantly associated with habitat along the lateral connectivity gradient. Food chain length peaked in tertiary channels in both seasons, probably due to higher species diversity of prey at these habitats. We infer that food chain length and trophic position of fish assemblages were lower in backwater habitats in the summer mainly because of the use of alternative food sources in these habitats. 4. A greater number of conspecifics exhibited significant among‐habitat variation in trophic position during the summer, indicating that low river stages can constrain fish movements in the Upper Mississippi River. 5. Results of this study should provide a better understanding of the fundamental structure of large river ecosystems and an improved basis for river rehabilitation and management through knowledge of the importance of lateral complexity in rivers.  相似文献   

19.
Recent research has elucidated the positive ecological roles of large wood (LW) in fish-bearing channels. However, where logjams increase local flooding and bank erosion, LW has negative impacts on public safety and property protection. Although our understanding of reach-scale processes and patterns has increased dramatically in recent years, only a few studies have integrated this knowledge at the watershed scale. Here we review variations in LW dynamics along a gradient of watershed sizes. In small watersheds, a massive amount of LW, resulting from forest dynamics and hillslope processes, remains on the valley floor. These pieces may persist for several decades and are eventually transported during debris flows. In intermediate watersheds, LW is dominantly recruited by bank erosion from adjacent riparian areas. These pieces are continuously transported downstream with LW pieces that are supplied from the upstream watershed by floods because these channels have a greater width and depth than the length and diameter of the pieces, as well as a high stream power. This leads to fragmentation of the LW pieces, which increases their transportability. In large watersheds, LW pieces are frequently recruited at locations where the channel is adjacent to riparian forests. Floated LW pieces can accumulate along channels with wide floodplains. Storage in floodplains can lead to more rapid decay than in an anaerobic environment, resulting in the subsequent removal of LW pieces from the system. Our review presents a generalized view of LW processing at the watershed scale, and is relevant to ecosystem management, disaster prevention and the identification of knowledge gaps.  相似文献   

20.
River hydrogeomorphology is a potential predictor of ecosystem and assemblage variation. We tested for fish assemblage variation as a function of hydrogeomorphology in a Midwestern US large river, the Wabash River. Fish data were classified by taxonomy and traits and we tested if assemblages varied with river hydrogeomorphology or river distance, defined into 10‐km distinct reaches. Three unique geomorphological units, Functional Process Zones (FPZ), were identified using an ArcGIS hydrogeomorphic model, based primarily on channel width, floodplain width, and down valley slope. Five locations were identified as FPZ A with narrow stream channel, high down valley slope, and an expansive floodplain. Ten locations were identified as FPZ B with a wide river channel and wide floodplain. Thirty‐five locations were identified as FPZ C with wide river channel and a constrained floodplain. The sites were categorized into three stream orders: 5, 6, and 7. We found hydrogeomorphology classified by unique FPZs or by river distance influenced taxonomic and functional fish assemblages for the Wabash River. There was high overlap among fish occurrences among FPZs, but nine species resulted as significant indicators of specific FPZs. Five traits were significant indicators of FPZs: an intermediate Swim Factor score, medium tolerance to silt, small‐large stream size preference, and two Shape Factor categories. Our conclusions are that fish assemblages respond strongly to local geomorphology and river distance, fitting the riverine ecosystem synthesis and the river continuum concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号