首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Das S  Pellett PE 《Journal of virology》2011,85(12):5864-5879
Human cytomegalovirus (HCMV) induces extensive remodeling of the secretory apparatus to form the cytoplasmic virion assembly compartment (cVAC), where virion tegumentation and envelopment take place. We studied the structure of the cVAC by confocal microscopy to assess the three-dimensional distribution of proteins specifically associated with individual secretory organelles. In infected cells, early endosome antigen 1 (EEA1)-positive vesicles are concentrated at the center of the cVAC and, as previously seen, are distinct from structures visualized by markers for the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). EEA1-positive vesicles can be strongly associated with markers for recycling endosomes, to a lesser extent with markers associated with components of the endosomal sorting complex required for transport III (ESCRT III) machinery, and then with markers of late endosomes. In comparisons of uninfected and infected cells, we found significant changes in the structural associations and colocalization of organelle markers, as well as in net organelle volumes. These results provide new evidence that the HCMV-induced remodeling of the membrane transport apparatus involves much more than simple relocation and expansion of preexisting structures and are consistent with the hypothesis that the shift in identity of secretory organelles in HCMV-infected cells results in new functional profiles.  相似文献   

2.
The human cytomegalovirus (HCMV) has been shown to complete its final envelopment on cytoplasmic membranes prior to its secretion to the extracellular medium. However, the nature of these membranes has not been characterized. It is thought that HCMV acquires its final envelope from the trans‐Golgi network (TGN), though we and others have previously reported a role for endocytic membranes. Here we studied the localization of cellular markers in HCMV‐infected cells and in isolated viruses. Immunofluorescence staining indicated that HCMV induces the recruitment of TGN and endosomal markers to the virus factory. Immuno‐gold labelling of isolated viral particles and electron microscopy demonstrated the incorporation of TGN46, endosomal markers early endosomal antigen 1, annexin I, transferrin receptor and CD63, and the cation‐independent mannose 6‐phosphate receptor, which traffics between the TGN and endosomes into the viral envelope. Virus immunoprecipitation assays demonstrated that virions containing TGN46 and CD63 were infectious. This study reconciles the apparent controversy regarding the nature of the HCMV assembly site and suggests that HCMV has the ability to generate a novel membrane compartment containing markers for both TGN and endosomes, or that the membranes that HCMV uses for its envelope may be vesicles in transit between the TGN and endosomes.  相似文献   

3.
The eukaryotic subtilisin-like endoprotease furin is found predominantly in the trans-Golgi network (TGN) and cycles between this compartment, the cell surface, and the endosomes. There is experimental evidence for endocytosis from the plasma membrane and transport from endosomes to the TGN, but direct exit from the TGN to endosomes via clathrin-coated vesicles has only been discussed but not directly shown so far. Here we present data showing that expression of furin promotes the first step of clathrin-coat assembly at the TGN, the recruitment of the Golgi-specific assembly protein AP-1 on Golgi membranes. Further, we report that furin indeed is present in isolated clathrin-coated vesicles. Packaging into clathrin-coated vesicles requires signal components in the furin cytoplasmic domain which can be recognized by AP-1 assembly proteins. We found that besides depending on the phosphorylation state of a casein kinase II site, interaction of the furin tail with AP-1 and its mu1subunit is mediated by a tyrosine motif and to less extent by a leucine-isoleucine signal, whereas a monophenylalanine motif is only involved in binding to the intact AP-1 complex. This study implies that high affinity interaction of AP-1 or mu1 with the cytoplasmic tail of furin needs a complex interplay of signal components rather than one distinct signal.  相似文献   

4.
Crump CM  Hung CH  Thomas L  Wan L  Thomas G 《Journal of virology》2003,77(20):11105-11113
The final envelopment of herpesviruses during assembly of new virions is thought to occur by the budding of core viral particles into a late secretory pathway organelle, the trans-Golgi network (TGN), or an associated endosomal compartment. Several herpesvirus envelope glycoproteins have been previously shown to localize to the TGN when expressed independently from other viral proteins. In at least some cases this TGN localization has been shown to be dependent on clusters of acidic residues within their cytoplasmic domains. Similar acidic cluster motifs are found in endogenous membrane proteins that also localize to the TGN. These acidic cluster motifs interact with PACS-1, a connector protein that is required for the trafficking of proteins containing such motifs from endosomes to the TGN. We show here that PACS-1 interacts with the cytoplasmic domain of the HCMV envelope glycoprotein B (gB) and that PACS-1 function is required for normal TGN localization of HCMV gB. Furthermore, inhibition of PACS-1 activity in infected cells leads to a decrease in HCMV titer, whereas an increase in expression of functional PACS-1 leads to an increase in HCMV titer, suggesting that PACS-1 is required for efficient production of HCMV.  相似文献   

5.
K N Fish  W Britt    J A Nelson 《Journal of virology》1996,70(3):1855-1862
Human cytomegalovirus (HCMV) infection of monocyte-derived macrophages (MDM) results in delayed and nonlytic productive viral growth. During late stages of replication, infectious virus remains cell associated in cytoplasmic vacuoles. In order to understand HCMV survival and persistence in MDM, we examined mechanisms involved in the formation and trafficking of HCMV-containing vacuoles in these cells. Utilizing double-label immunofluorescence with antibodies to viral and cellular proteins, HCMV-containing vacuoles were associated with the Golgi apparatus marker mannosidase II but not with markers to early endosomes (transferrin receptor and rab5) or late endosomes and early lysosomes (LAMP-1 and -2). In addition, as late-stage viral infection progressed in MDM, the cells displayed increasing abnormalities in the Golgi apparatus. Analysis of structural features of infected cells revealed the disruption of the microtubule network. These observations suggest a novel mechanism by which HCMV is vacuolized in MDM, avoiding degradation and release from the cell.  相似文献   

6.
Human cytomegalovirus (HCMV) is a prototypic member of the betaherpesvirus family. The HCMV virion is composed of a large DNA genome encapsidated within a nucleocapsid, which is wrapped within an inner proteinaceous tegument and an outer lipid envelope containing viral glycoproteins. Although genome encapsidation clearly occurs in the nucleus, the subsequent steps in the virion assembly process are unclear. HCMV glycoprotein B (gB) is a major component of the virion envelope that plays a critical role in virus entry and is essential for the production of infectious virus progeny. The aim of our present study was to identify the secretory compartment to which HCMV gB was localized and to investigate the role of endocytosis in mediating gB localization and HCMV biogenesis. We show that HCMV gB is localized to the trans-Golgi network (TGN) in HCMV-infected cells and that gB contains all of the trafficking information necessary for TGN localization. Endocytosis of gB was shown to play a role in mediating TGN localization of gB and in targeting of the protein to the site of virus envelopment. However, inhibition of endocytosis with a dominant-negative dynamin I molecule did not affect the production of infectious virus. These observations indicate that, although endocytosis is involved in the trafficking of gB to the site of glycoprotein accumulation in the TGN, endocytosis of gB is not required for the production of infectious HCMV.  相似文献   

7.
The precise trafficking routes followed by newly synthesized lysosomal membrane proteins after exit from the Golgi are unclear. To study these events we created a novel chimera (YAL) having a lumenal domain comprising two tyrosine sulfation motifs fused to avidin, and the transmembrane and cytoplasmic domains of lysosome associated membrane protein 1 (Lamp1). The newly synthesized protein rapidly transited from the trans- Golgi Network (TGN) to lysosomes (t(1/2) approximately 30 min after a lag of 15-20 min). However, labeled chimera was captured by biotinylated probes endocytosed for only 5 min, indicating that the initial site of entry into the endocytic pathway was early endosomes. Capture required export of YAL from the TGN, and endocytosis of the biotinylated reagent, and was essentially quantitative within 2 h of chase, suggesting that all molecules were following an identical route. There was no evidence of YAL trafficking via the cell surface. Fusion of TGN-derived vesicles with 5 min endosomes could be recapitulated in vitro, but neither late endosomes nor lysosomes could serve as acceptor compartments. This suggests that contrary to previous conclusions, most if not all newly synthesized Lamp1 traffics from the TGN to early endosomes prior to delivery to late endosomes and lysosomes.  相似文献   

8.
Mannose-6-phosphate receptors (MPRs) transport lysosomal hydrolases from the trans Golgi network (TGN) to endosomes. Recently, the multi-ligand receptor sortilin has also been implicated in this transport, but the transport carriers involved herein have not been identified. By quantitative immuno-electron microscopy, we localized endogenous sortilin of HepG2 cells predominantly to the TGN and endosomes. In the TGN, sortilin colocalized with MPRs in the same clathrin-coated vesicles. In endosomes, sortilin and MPRs concentrated in sorting nexin 1 (SNX1)-positive buds and vesicles. SNX1 depletion by small interfering RNA resulted in decreased pools of sortilin in the TGN and an increase in lysosomal degradation. These data indicate that sortilin and MPRs recycle to the TGN in SNX1-dependent carriers, which we named endosome-to-TGN transport carriers (ETCs). Notably, ETCs emerge from early endosomes (EE), lack recycling plasma membrane proteins and by three-dimensional electron tomography exhibit unique structural features. Hence, ETCs are distinct from hitherto described EE-derived membranes involved in recycling. Our data emphasize an important role of EEs in recycling to the TGN and indicate that different, specialized exit events occur on the same EE vacuole.  相似文献   

9.
Although the assembly of herpesviruses has remained an active area of investigation, considerable controversy continues to surround the cellular location of tegument and envelope acquisition. This controversy is particularly evident when the proposed pathways for alpha- and beta-herpesvirus assembly are compared. We have approached this aspect of human cytomegalovirus (HCMV) assembly, specifically, envelopment, by investigating the intracellular trafficking of viral tegument proteins which localize in the cytoplasms of infected cells. In this study we have demonstrated that the virion tegument protein pp28 (UL99), a true late protein, was membrane associated as a result of myristoylation. A mutation in this protein which prevented incorporation of [(3)H]myristic acid also altered the detergent solubility and intracellular distribution of the protein when it was expressed in transfected cells. Using a panel of markers for intracellular compartments, we could localize the expression of wild-type pp28 to an intracellular compartment which colocalized with the endoplasmic reticulum-Golgi-intermediate compartment (ERGIC), a dynamic compartment of the secretory pathway which interfaces with both the ER and Golgi apparatus. The localization of this viral tegument protein within an early secretory compartment of the cell provided further evidence that the assembly of the HCMV tegument likely includes a cytoplasmic phase. Because pp28 has been shown to be localized to a cytoplasmic assembly compartment in HCMV-infected cells, our findings also suggested that viral tegument protein interactions within the secretory pathway may have an important role in the assembly of the virion.  相似文献   

10.
Constitutive secretory vesicles carrying heparan sulfate proteoglycan (HSPG) were identified in isolated rat hepatocytes by pulse-chase experiments with [35S]sulfate and purified by velocity-controlled sucrose gradient centrifugation followed by equilibrium density centrifugation in Nycodenz. Using this procedure, the vesicles were separated from plasma membranes, Golgi, trans-Golgi network (TGN), ER, endosomes, lysosomes, transcytotic vesicles, and mitochondria. The diameter of these vesicles was approximately 100-200 nm as determined by electron microscopy. A typical coat structure as described for intra- Golgi transport vesicles or clathrin-coated vesicles could not be seen, and the vesicles were not associated with the coat protein beta-COP. Furthermore, the vesicles appear to represent a low density compartment (1.05-1.06 g/ml). Other constitutively secreted proteins (rat serum albumin, apolipoprotein E, and fibrinogen) could not be detected in purified HSPG-carrying vesicles, but banded in the denser fractions of the Nycodenz gradient. Moreover, during pulse-chase labeling with [35S]methionine, labeled albumin did not appear in the post-TGN vesicle fraction carrying HSPGs. These findings indicate sorting of HSPGs and albumin into different types of constitutive secretory vesicles in hepatocytes. Two proteins were found to be tightly associated with the membranes of the HSPG carrying vesicles: a member of the ADP ribosylation factor family of small guanine nucleotide-binding proteins and an unknown 14-kD peripheral membrane protein (VAPP14). Concerning the secretory pathway, we conclude from these results that ADP ribosylation factor proteins are not only involved in vesicular transport from the ER via the Golgi to the TGN, but also in vesicular transport from the TGN to the plasma membrane.  相似文献   

11.
Although considerable progress has been made towards characterizing virus assembly processes, assignment of the site of tegumentation and envelopment for human cytomegalovirus (HCMV) is still not clear. In this study, we examined the envelopment of HCMV particles in human lung fibroblasts (HF) HL 411 and HL 19, human umbilical vein endothelial cells, human pulmonary arterial endothelial cells, and arterial smooth muscle cells at different time points after infection by electron microscopy (EM), immunohistochemistry, and confocal microscopy analysis. Double-immunofluorescence labeling experiments demonstrated colocalization of the HCMV glycoprotein B (gB) with the Golgi resident enzyme mannosidase II, the Golgi marker TGN (trans-Golgi network) 46, and the secretory vacuole marker Rab 3 in all cell types investigated. Final envelopment of tegumented capsids was observed at 5 days postinfection by EM, when tegumented capsids budded into subcellular compartments located in the cytoplasm, in close proximity to the Golgi apparatus. Immunogold labeling and EM analysis confirmed staining of the budding compartment with HCMV gB, Rab 3, and mannosidase II in HL 411 cells. However, the markers Rab 1, Rab 2, Rab 7, Lamp 1 (late endosomes and lysosomes), and Lamp 2 (lysosomes) neither showed specific staining of the budding compartment in the immunogold labeling experiments nor colocalized with gB in the immunofluorescent colocalization experiments in any cell type studied. Together, these results suggest that the final envelopment of HCMV particles takes place mainly into a Golgi-derived secretory vacuole destined for the plasma membrane, which may release new infectious virus particles by fusion with the plasma membrane.  相似文献   

12.
Mannose 6-phosphate receptors (MPRs) deliver newly synthesized lysosomal enzymes to endosomes and then recycle to the Golgi. MPR recycling requires Rab9 GTPase; Rab9 recruits the cytosolic adaptor TIP47 and enhances its ability to bind to MPR cytoplasmic domains during transport vesicle formation. Rab9-bearing vesicles then fuse with the trans-Golgi network (TGN) in living cells, but nothing is known about how these vesicles identify and dock with their target. We show here that GCC185, a member of the Golgin family of putative tethering proteins, is a Rab9 effector that is required for MPR recycling from endosomes to the TGN in living cells, and in vitro. GCC185 does not rely on Rab9 for its TGN localization; depletion of GCC185 slightly alters the Golgi ribbon but does not interfere with Golgi function. Loss of GCC185 triggers enhanced degradation of mannose 6-phosphate receptors and enhanced secretion of hexosaminidase. These data assign a specific pathway to an interesting, TGN-localized protein and suggest that GCC185 may participate in the docking of late endosome-derived, Rab9-bearing transport vesicles at the TGN.  相似文献   

13.
The GGAs (Golgi-localized, gamma ear-containing, ADP ribosylation factor-binding proteins) are multidomain proteins implicated in protein trafficking between the Golgi and endosomes. We examined whether the three mammalian GGAs act independently or together to mediate their functions. Using cryo-immunogold electron microscopy, the three GGAs were shown to colocalize within coated buds and vesicles at the trans-Golgi network (TGN) of HeLa cells. In vitro binding experiments revealed multidomain interactions between the GGAs, and chemical cross-linking experiments demonstrated that GGAs 1 and 2 form a complex on Golgi membranes. RNA interference of each GGA resulted in decreased levels of the other GGAs and their redistribution from the TGN to cytosol. This was associated with impaired incorporation of the cation-independent mannose 6-phosphate receptor into clathrin-coated vesicles at the TGN, partial redistribution of the receptor to endosomes, and missorting of cathepsin D. The morphology of the TGN was also altered. These findings indicate that the three mammalian GGAs cooperate to sort cargo and are required for maintenance of TGN structure.  相似文献   

14.
Summary Using cryo-fixation and freeze-substitution electron microscopy, the effects of brefeldin A (BFA) on the structure of the trans-Golgi network (TGN), the endoplasmic reticulum (ER), and Golgi bodies in the unicellular green algaBotryococcus braunii were examined at various stages of the cell cycle. In the presence of BFA, all the TGNs of interphase and dividing cells aggregated to form a single tubular mass. In contrast, the TGNs decomposed just after cell division and disappeared during cell wall formation. Throughout the cell cycle, the TGN produced at least six kinds of vesicles, of which two were not formed in the presence of BFA: vesicles with a diameter of 200 nm and fibrillar substances, which formed in interphase cells; and vesicles with a diameter of 180–240 nm, which may participate in septum formation. In addition, the number of clathrin-coated vesicles attaching to the TGN decreased. In interphase cells, BFA induced the disassembly of Golgi bodies and an increase in the smooth-ER cisternae at the cis-side of Golgi bodies. This result may suggest the existence of retrograde transport from the Golgi bodies to the ER in the presence of BFA. These drastic structural changes in the Golgi bodies and the ER of interphase cells were not observed in BFA-treated dividing cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TGN trans-Golgi network  相似文献   

15.
Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.  相似文献   

16.
Wisner TW  Johnson DC 《Journal of virology》2004,78(21):11519-11535
Herpes simplex virus (HSV) and other alphaherpesviruses assemble enveloped virions in the trans-Golgi network (TGN) or endosomes. Enveloped particles are formed when capsids bud into TGN/endosomes and virus particles are subsequently ferried to the plasma membrane in TGN-derived vesicles. Little is known about the last stages of virus egress from the TGN/endosomes to cell surfaces except that the HSV directs transport of nascent virions to specific cell surface domains, i.e., epithelial cell junctions. Previously, we showed that HSV glycoprotein gE/gI accumulates extensively in the TGN at early times after infection and also when expressed without other viral proteins. At late times of infection, gE/gI and a cellular membrane protein, TGN46, were redistributed from the TGN to epithelial cell junctions. We show here that gE/gI and a second glycoprotein, gB, TGN46, and another cellular protein, carboxypeptidase D, all moved to cell junctions after infection with an HSV mutant unable to produce cytoplasmic capsids. This redistribution did not involve L particles. In contrast to TGN membrane proteins, several cellular proteins that normally adhere to the cytoplasmic face of TGN, Golgi, and endosomal membranes remained primarily dispersed throughout the cytoplasm. Therefore, cellular and viral membrane TGN proteins move to cell junctions at late times of HSV infection when the production of enveloped particles is blocked. This is consistent with the hypothesis that there are late HSV proteins that reorganize or redistribute TGN/endosomal compartments to promote virus egress and cell-to-cell spread.  相似文献   

17.
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.  相似文献   

18.
TGN38/41 is a heterodimeric integral membrane protein that cycles between the trans Golgi network and the cell surface. A tyrosine-containing tetrapeptide motif within its cytoplasmic tail is necessary and sufficient for determining its steady-state location in the TGN. Recent results have shown that TGN38/41 plays an essential role in the formation of exocytic vesicles at the TGN by serving as a receptor for complexes of a cytoplasmic protein known as p62, and one of four small GTP-binding proteins, including rab6. For budding to occur, this complex must bind to the cytoplasmic domain of TGN38/41. We propose here that TGN38/41 may couple the segregation of secretory proteins to the budding of exocytic vesicles at the TGN.  相似文献   

19.
Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.  相似文献   

20.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号