首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several series of amphiphiles of increasing chain length were tested for their abilities to modify the L alpha-HII transition of dielaidoylphosphatidylethanolamine using differential scanning calorimetry. Acylcarnitines, alkyl sulfates, alkylsulfobetaines, and phosphatidylcholines, with chain lengths between about 6 and 12 carbon atoms, show an increasing capacity to raise the L alpha-HII phase transition temperature of phosphatidylethanolamine. This is ascribed to increased partitioning of the added amphiphile from water into the membrane as the chain length increases. Alkyl sulfates and alkyltrimethylammonium bromides have diminished capacities to raise the L alpha-HII transition temperature as the chain length is increased from 12 to 16. This is caused by an increase in the hydrophobic portion of the amphiphile leading to a change in the intrinsic radius of curvature and a decrease in the hydrocarbon packing constraints in the HII phase relative to the shorter chain amphiphiles. The L alpha-HII transition temperature of phosphatidylethanolamine with acylcarnitines of chain length 14-20 carbon atoms, alkylsulfobetaines above 14 carbon atoms, and phosphatidylcholines with acyl groups having above 10 carbon atoms is relatively insensitive to chain length. We suggest that this is caused by a balance between increasing hydrocarbon volume promoting the HII phase through decreased intrinsic radius of curvature and greater relief of hydrocarbon packing constraints vs greater intermolecular interactions favoring the more condensed L alpha phase. This latter effect is more important for amphiphiles with large headgroups which can pack more efficiently in the L alpha phase. The phosphatidylcholines show a gradual decrease in bilayer stabilization between 10 and 22 carbon atoms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The interaction of avidin--a basic protein from hen egg-white--with dimyristoyl-phosphatidylglycerol membranes was investigated by spin-label electron paramagnetic resonance spectroscopy. Phosphatidylcholines, bearing the nitroxide spin label at different positions along the sn-2 acyl chain of the lipid were used to investigate the effect of protein binding on the lipid chain-melting phase transition and acyl chain dynamics. Binding of the protein at saturating levels results in abolition of the chain-melting phase transition of the lipid and accompanying perturbation of the lipid acyl chain mobility. In the fluid phase region, the outer hyperfine splitting increases for all phosphatidylcholine spin-label positional isomers, indicating that the chain mobility is decreased by binding avidin. However, there was no evidence for direct interaction of the protein with the lipid acyl chains, clearly indicating that the protein does not penetrate the hydrophobic interior of the membrane. Selectivity experiments with different spin-labelled lipid probes indicate that avidin exhibits a preference for negatively charged lipid species, although all spin-labelled lipid species indirectly sense the protein binding. The interaction with negatively charged lipids is relevant to the use of avidin in applications such as the ultrastructural localization of biotinylated lipids in histochemical studies.  相似文献   

3.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

4.
The intramembrane locations of several spin labeled probes in small egg phosphatidylcholine (egg PC) vesicles were determined from the enhancement of the 13C nuclear spin lattice relaxation of the membrane phospholipid. Electron paramagnetic resonance (EPR) spectroscopy was also used to measure the relative environmental polarities of the spin labels in egg PC vesicles, ethanol and aqueous solution. The binding location of the spin label group was determined for a pair of hydrophobic ion spin labels, a pair of long chain amphiphiles, and three stearates containing doxyl groups at the 5, 10 and 16 positions. The nuclear relaxation results indicate that the spin label groups on the stearates are located nearer to the membrane exterior than the analogous positions of the unlabeled phospholipid acyl chains. In addition, the spin label groups of the hydrophobic ions and long chain amphiphiles are located near the acyl chain methylene immediately adjacent to the carboxyl group. The relative polarities, determined by the EPR technique, are consistent with the nuclear relaxation results. This information, when combined with information on their electrical properties, allows for an assessment of the conformation and position of these voltage sensitive probes in membranes.  相似文献   

5.
The structure of the chromaffin granule membrane has been probed using a number of different spin labels. Both the effect of temperature and high levels of calcium have been studied. 1. The results from three positional isomers of the stearic acid spin label demonstrate that a substantial part of the membrane lipid (that is sensed by the probe) is in a bilayer structure which undergoes a structural transition at 32-36 degrees C, characterized by an increase in the population of gauche isomers in the lipid chains. A possible mechanism for this transition would be the preferential segregation of cholesterol. 2. The covalently bound iodoacetamide spin label reveals a transition within the protein component of the membrane or its immediate lipid environment at 32 degrees C. This transition corresponds to an increased degree of motional freedom of the spin label above the transition temperature. 3. The lipid-soluble spin label 2,2,6,6-tetramethyl-piperidine-1-oxyl exhibits a break at 34 degrees C in the temperature-dependence of its partitioning into the membrane. This could correspond to the onset of a lateral separation in the membrane lipid, again possible involving a re-distribution of cholesterol. 4. Calcium abolishes, diminishes or shifts the transition observed by the spin label and decreases the amplitude of motion of the stearic acid spin labels, again possibly involving a redistribution of cholesterol and also lysolecithin. The temperatures of the structural transition agree well with the changes in the enzymic activity of the membrane ATPase and NADH oxidase functions and also with the results from fluorescent probes [Bashford et al., Eur. J. Biochem. 67, 105-114(1976)]. It is possible that triggering of the transition either by calcium or some other stimulus may play a role in catecholamine release and membrane fusion.  相似文献   

6.
We studied the properties of a series of phosphatidylcholine molecules with branched acyl chains. These lipids have previously been shown to have marked stimulatory effects on the side-chain cleavage activity of cytochrome P450SCC (CYP11A1), an enzyme of the inner mitochondrial membrane. The synthetic lipids used were diacyl phosphatidylcholines with the decanoyl, dodecanoyl or tetradecanoyl chain having a hexyl, octyl or decyl straight chain aliphatic branch at the 2-position. All three lipids lowered the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine, the lipids with longer acyl chains being more effective in this regard. As pure lipids all of the forms were found by X-ray diffraction to be predominantly in the hexagonal phase (HII) over the entire temperature range of 7-75 degrees C. The properties of the HII phase were unusual with regard to the small size of the lattice spacings and the small temperature dependence of the spacings. We used tetradecane to relieve hydrocarbon packing constraints to determine the intrinsic radius of curvature of the lipid monolayer. The elastic bending modulus was measured in the presence of tetradecane by introducing an osmotic gradient across the hexagonal phase cylinders with aqueous solutions of poly(ethylene glycol). The elastic bending modulus was found to be higher than that observed with other lipids and to increase with temperature. Both the small intrinsic radius of curvature and the high elastic bending modulus indicate that the presence of these lipids in bilayer membranes will impose a high degree of negative curvature strain.  相似文献   

7.
Lipid-protein interactions mediate the photochemical function of rhodopsin   总被引:12,自引:0,他引:12  
We have investigated the molecular features of recombinant membranes that are necessary for the photochemical function of rhodopsin. The magnitude of the metarhodopsin I to metarhodopsin II phototransient following a 25% +/- 3% bleaching flash was used as a criterion of photochemical activity at 28 degrees C and pH 7.0. Nativelike activity of rhodopsin can be reconstituted with an extract of total lipids from rod outer segment membranes, demonstrating that the protein is minimally perturbed by the reconstitution protocol. Rhodopsin photochemical activity is enhanced by phosphatidylethanolamine head groups and docosahexaenoyl (22:6 omega 3) acyl chains. An equimolar mixture of phosphatidylethanolamine and phosphatidylcholine containing 50 mol% docosahexaenoyl chains results in optimal photochemical function. These results suggest the importance of both the head-group and acyl chain composition of the rod outer segment lipids in the visual process. The extracted rod lipids and those lipid mixtures favoring the conformational change from metarhodopsin I to II can undergo lamellar (L alpha) to inverted hexagonal (HII) phase transitions near physiological temperature. Interaction of rhodopsin with membrane lipids close to a L alpha to HII (or cubic) phase boundary may thus lead to properties which influence the energetics of conformational states of the protein linked to visual function.  相似文献   

8.
M Lafleur  P R Cullis  B Fine  M Bloom 《Biochemistry》1990,29(36):8325-8333
The orientational order profile has been determined by using deuterium nuclear magnetic resonance (2H NMR) for POPE in the lamellar liquid-crystalline (L alpha) and the hexagonal (HII) phases and is shown to be sensitive to the symmetry of the lipid phase. In the HII phase, as compared to the L alpha phase, the acyl chains are characterized by a greater motional freedom, and the orientational order is distributed more uniformly along the lipid acyl chain. This is consistent with a change from a cylindrical to a wedge-shaped space available for the lipid chain. 2H NMR studies of POPE dispersions containing tetradecanol or decane, both of which can induce HII phase structure, show very different behavior. Tetradecanol appears to align with the phospholipid chains and experience the L alpha to HII phase transition with a similar change in motional averaging as observed for the phospholipid chains themselves. In contrast, decane is apparently deeply embedded in the lipid structure and exhibits only a small degree of orientation. The L alpha to HII phase transition for systems containing decane leads to a dramatic increase of the motional freedom of decane which is more pronounced than that observed for the lipid chains. This is consistent with a preferential partition of the decane molecules into a disordered environment such as the intercylinder spaces in the HII phase. The presence of decane in the HII phase structure does not modify the order of the lipid chains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
By varying the pH, the influence of the ionization degree on the structure and dynamics of aqueous dispersions of 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) was studied, using 2H-NMR methods. For this purpose DOPS was synthesized with deuterium labels incorporated either stereospecifically at the beta-position of the serine headgroup ([2-2H]DOPS) or at the 11-position of both acyl chains ([11,11-2H2]DOPS), allowing the effects of pH on headgroup and acyl chains to be measured in parallel. A large scale synthesis procedure of stereospecific 1,2-dioleoyl-sn-glycero-3-phospho-[2-2H]-L- serine is described. The quadrupolar splitting (delta nu q) of [2-2H]DOPS is shown to be a sensitive sensor for the degree of protonation of the molecule. Whereas the delta nu q of [2-2H]DOPS decreases upon lowering the pH, that of [11,11-2H2]DOPS gradually increases, indicating an increase in acyl chain ordering. In the pH range below the pKa value, DOPS exhibits a temperature-dependent bilayer to hexagonal HII phase transition, apparent from the 31P-NMR spectra and the occurrence of a second component in the [11,11-2H2]DOPS 2H-NMR spectrum, with a much smaller delta nu q. The HII phase component in spectra from [2-2H]DOPS coincides with the isotropic position and has no defined delta nu q. In the bilayer organization delta nu q and spin-lattice relaxation time (T1) values for the acyl chain deuterated DOPS are similar to those obtained for other lipid systems. In contrast the PS headgroup region displays a relatively rigid structure as evidenced by a large delta nu q and very small T1 values. Upon adopting the HII phase the T1 values of the acyl chain deuterons are hardly affected. The uniqueness of the PS headgroup with respect to structure and motional properties is reinforced by the occurrence of a T1 minimum at 45 degrees C in the measurement of the temperature dependence of T1 for [2-2H]DOPS in the hexagonal HII configuration. Quantitative analysis yields a correlation time (tau c) for the motions determining T1 under these conditions, of 3.45 ns.  相似文献   

10.
The following results are reported in this paper: The interaction of gramicidin with [11,11-2H2]dioleoylphosphatidylcholine (DOPC) and [11,11-2H2]dioleoylphosphatidylethanolamine (DOPE) at different stages of hydration was studied by 2H- and 31P-nuclear magnetic resonance. In the L alpha phase in excess water the acyl chains of phosphatidylethanolamine (PE) are more ordered than phosphatidylcholine (PC) most likely as the result of the lower headgroup hydration of the former lipid. In excess water gramicidin incorporation above 5 mol % in DOPC causes a bilayer----hexagonal HII phase change. In the HII phase acyl chain order is virtually unaffected by gramicidin but the peptide restricts the fast chain motions. At low water content gramicidin cannot induce the HII phase but it markedly decreases chain order in the DOPC bilayer. Increasing water content results in separation between a gramicidin-poor and a gramicidin-rich L alpha phase with decreased order of the entire lipid molecule. Further increase in hydration reverts at low gramicidin contents the phase separation and at high gramicidin contents results in a direct change of the disordered lamellar to the hexagonal HII phase. Gramicidin also promotes HII phase formation in the PE system but interacts much less strongly with PE than with PC. The results support our hypothesis that gramicidin, by a combination of strong intermolecular attraction forces and its pronounced cone shape, both involving the four tryptophans at the COOH-terminus, has a strong tendency to organize, with the appropriate lipid, in intramembranous cylindrical structures such as is found in the HII phase.  相似文献   

11.
Salt-induced fluid lamellar (L alpha) to inverted hexagonal (HII) phase transitions have been studied in diphosphatidylglycerols (cardiolipins) with different acyl chain compositions, using 31P nuclear magnetic resonance (NMR) spectroscopy. Cardiolipins with four myristoyl chains, tetramyristoyl cardiolipin (TMCL), and with four oleoyl chains, tetraoleoyl cardiolipin (TOCL), were synthesized chemically. TMCL was found to undergo a thermotropic lamellar gel to lamellar liquid-crystalline phase transition at 33-35 degrees C. This lipid exhibited an axially symmetric 31P-NMR spectrum corresponding to a lamellar phase at all NaCl concentrations between 0 and 6 M. In the case of TOCL, formation of an HII phase was induced by salt concentrations of 3.5 M NaCl or greater. These observations, taken together with earlier findings that bovine heart cardiolipin aqueous dispersions adopt an HII phase at salt concentrations of 1.5 M NaCl or greater, indicate that increasing unsaturation and length of the acyl chains favour formation of the HII phase in diphosphatidylglycerols.  相似文献   

12.
P Fajer  A Watts    D Marsh 《Biophysical journal》1992,61(4):879-891
The saturation transfer electron spin resonance (STESR) spectra of 10 different positional isomers of phosphatidylcholine spin-labeled in the sn-2 chain have been investigated in the low temperature phases of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The results of continuous wave saturation and of saturation recovery measurements on the conventional ESR spectra were used to define the saturation properties necessary for interpreting the STESR results in terms of the chain dynamics. Spin labels with the nitroxide group located in the center of the chain tended to segregate preferentially from the DPPC host lipids in the more ordered phases, causing spin-spin interactions which produced spectral broadening and had a very pronounced effect on the saturation characteristics of the labels. This was accompanied by a large decrease in the STESR spectral intensities and diagnostic line height ratios relative to those of spin labels that exhibited a higher degree of saturation at the same microwave power. The temperature dependence of the STESR spectra of the different spin label isomers revealed a sharp increase in the rate of rotation about the long axis of the lipid chains at approximately 25 degrees C, correlating with the pretransition of gel phase DPPC bilayers, and a progressive increase in the segmental motion towards the terminal methyl end of the chains in all phases. Prolonged incubation at low temperatures led to an increase in the diagnostic STESR line height ratios in all regions of the spectrum, reflecting the decrease in chain mobility accompanying formation of the subgel phase. Continuous recording of the central diagnostic peak height of the STESR spectra while scanning the temperature revealed a discontinuity at approximately 14-17 degrees C, corresponding to the DPPC subtransition which occurred only on the initial upward temperature scan, in addition to the discontinuity at 29-31 degrees C corresponding to the pretransition which displayed hysteresis on the downward temperature scan.  相似文献   

13.
We report a simple new nuclear magnetic resonance (NMR) spectroscopic method to investigate order and dynamics in phospholipids in which inter-proton pair order parameters are derived by using high resolution 13C cross-polarization/magic angle spinning (CP/MAS) NMR combined with 1H dipolar echo preparation. The resulting two-dimensional NMR spectra permit determination of the motionally averaged interpair second moment for protons attached to each resolved 13C site, from which the corresponding interpair order parameters can be deducted. A spin-lock mixing pulse before cross-polarization enables the detection of spin diffusion amongst the different regions of the lipid molecules. The method was applied to a variety of model membrane systems, including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/sterol and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/sterol model membranes. The results agree well with previous studies using specifically deuterium labeled or predeuterated phospholipid molecules. It was also found that efficient spin diffusion takes place within the phospholipid acyl chains, and between the glycerol backbone and choline headgroup of these molecules. The experiment was also applied to biosynthetically 13C-labeled ergosterol incorporated into phosphatidylcholine bilayers. These results indicate highly restricted motions of both the sterol nucleus and the aliphatic side chain, and efficient spin exchange between these structurally dissimilar regions of the sterol molecule. Finally, studies were carried out in the lamellar liquid crystalline (L alpha) and inverted hexagonal (HII) phases of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). These results indicated that phosphatidylethanolamine lamellar phases are more ordered than the equivalent phases of phosphatidylcholines. In the HII (inverted hexagonal) phase, despite the increased translational freedom, there is highly constrained packing of the lipid molecules, particularly in the acyl chain region.  相似文献   

14.
Electron paramagnetic resonance (EPR) and differential scanning calorimetry (I)SO have been used to study the effect on the phase transition of dimyristoylphosphatidylcholine membranes of incorporating various stearic acid spin labels (SASL's) that contain the bulky oxazolidine ring at various positions along the stearyl chain. SASL's lowered the phase transition temperature and decreased the size of the cooperative unit, with the effects stronger in the order of 9-> 12-> 5-> 16-SASL > stearic acid (no label). Incorporation of stearic acid without the spin label slightly increases the phase transition temperature. Incorporation of 9-SASL (3 mol% of lipid) decreased the transition temperature by 1.8C and the cooperative unit to 115 of that without the spin label, while the effect of 16-SASL was slight. The effect on transition enthalpy was small. It is concluded that the perturbing effect of placing a bulky group on the alkyl chain on phase transition is through inducing packing defects in the gel-phase.  相似文献   

15.
The cell-wall-less bacterium Acholeplasma laidlawii A-EF22 synthesizes eight glycerolipids. Some of them form lamellar phases, whereas others are able to form normal or reversed nonlamellar phases. In this study we examined the phase properties of total lipid extracts with limiting average acyl chain lengths of 15 and 19 carbon atoms. The temperature at which these extracts formed reversed hexagonal (HII) phases differed by 5-10 degreesC when the water contents were 20-30 wt%. Thus the cells adjust the ratio between lamellar-forming and nonlamellar-forming lipids to the acyl chain lengths. Because short acyl chains generally increase the potential of lipids to form bilayers, it was judged interesting to determine which of the A. laidlawii A lipids are able to form reversed nonlamellar phases with short acyl chains. The two candidates with this ability are monoacyldiglucosyldiacylglycerol (MADGlcDAG) and monoglucosyldiacylglycerol. The average acyl chain lengths were 14.7 and 15.1 carbon atoms, and the degrees of acyl chain unsaturation were 32 and 46 mol%, respectively. The only liquid crystalline phase formed by MADGlcDAG is an HII phase. Monoglucosyldiacylglycerol forms reversed cubic (Ia3d) and HII phases at high temperatures. Thus, even when the organism is grown with short fatty acids, it synthesizes two lipids that have the capacity to maintain the nonlamellar tendency of the lipid bilayer. MADGlcDAG in particular contributes very powerfully to this tendency.  相似文献   

16.
We have examined the phase behavior of positional isomers of a polymerizable diacetylenic phospholipid, 1,2-di(heptacosadiynoyl)-sn-glycero-3-phosphocholine which has the diacetylene in varying position along the acyl chains. Upon cooling multilamellar vesicles (MLVs) through the liquid-crystalline to gel phase transition, all isomers examined spontaneously formed hollow, cylindrical microstructures (or tubules). Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) have been used to characterize positional isomers of this lipid in an effort to understand the effect of diacetylenic position on the molecular characteristics of tubule formation. Calorimetric results indicate that moving the position of the diacetylene along the acyl chain results in the alternation of the exotherm observed for the hydrated transition temperature associated with tubule formation, with higher transition temperatures (Tm) observed from isomers with an even number of methylenes between the diacetylene groups and the glycerol backbone. As the diacetylene is moved toward either end of the acyl chain, even with the observed alternation, the Tm was observed to increase. Calorimetric results of dry members of this series reveal an exotherm during cooling, the same temperature at which fully hydrated samples form tubules. This suggests that there is little difference in the phase behavior observed upon cooling the hydrated tubules and the dry diacetylenic material. FTIR results support the high degree of conformational order observed in tubules of this isomer series as a very strong CH2 wagging progression is observed between 1375 and 1200 cm-1. In addition, the C-H stretch region (3000 cm-1 to 2800 cm-1) indicates tight acyl chain packing with many all-trans segments. These results provide further evidence that tubules are uniquely crystalline microstructures and that this inherent crystallinity, and the formation of tubules is not affected by diacetylenic position.  相似文献   

17.
The polymorphic phase behavior of aqueous dispersions of a homologous series of 1,2-di-O-acyl-3-O-(beta-D-glucopyranosyl)-sn-glycerols was studied by differential scanning calorimetry. At fast heating rates, unannealed samples of these lipids exhibit a strongly energetic, lower temperature transition, which is followed by a weakly energetic, higher temperature transition. X-ray diffraction studies have enabled the assignments of these events to a lamellar gel/liquid crystalline (chain-melting) phase transition and a bilayer/nonbilayer phase transition, respectively. Whereas the values for both the temperature and enthalpy of the chain-melting phase transition increase with increasing acyl chain length, those of the bilayer/nonbilayer phase transition show almost no chain-length dependence. However, the nature of the bilayer/nonbilayer transition is affected by the length of the acyl chain. The shorter chain compounds form a nonbilayer 2-D monoclinic phase at high temperature whereas the longer chain compounds from a true inverted hexagonal (HII) phase. Our studies also show that the gel phase that is initially formed on cooling of these lipids is metastable with respect to a more stable gel phase and that prolonged annealing results in a slow conversion to the more stable phase after initial nucleation by incubation at appropriate low temperatures. The formation of these stable gel phases is shown to be markedly dependent upon the length of the acyl chains and whether they contain an odd or an even number of carbon atoms. There is also evidence to suggest that, in the case of the shorter chain compounds at least, the process may proceed via another gel-phase intermediate. In annealed samples of the shorter chain compounds, the stable gel phase converts directly to the L alpha phase upon heating, whereas annealed samples of the longer chain glycolipids convert to a metastable gel phase prior the chain melging.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The membrane lipid composition of living cells generally adjusts to the prevailing environmental and physiological conditions. In this study, membrane activity and lipid composition of the Gram-negative bacterium Vibrio sp. DSM14379, grown aerobically in a peptone-yeast extract medium supplemented with 0.5, 1.76, 3, 5 or 10% (w/v) NaCl, was determined. The ability of the membrane to reduce a spin label was studied by EPR spectroscopy under different salt concentrations in cell suspensions labeled with TEMPON. For lipid composition studies, cells were harvested in a late exponential phase and lipids were extracted with chloroform-methanol-water, 1:2:0.8 (v/v). The lipid polar head group and acyl chain compositions were determined by thin-layer and gas-liquid chromatographies. 31P-NMR spectroscopy was used to study the phase behaviour of the cell lipid extracts with 20 wt.% water contents in a temperature range from −10 to 50 °C. The results indicate that the ability of the membrane to reduce the spin label was highest at optimal salt concentrations. The composition of both polar head groups and acyl chains changed markedly with increasing salinity. The fractions of 16:0, 16:1 and 18:0 acyl chains increased while the fraction of 18:1 acyl chains decreased with increasing salinity. The phosphatidylethanolamine fraction correlated inversely with the lysophosphatidylethanolamine fraction, with phosphatidylethanolamine exhibiting a minimum, and lysophosphatidylethanolamine a maximum, at the optimum growth rate. The fraction of lysophosphatidylethanolamine was surprisingly high in the lipid extracts. This lipid can form normal micellar and hexagonal phases and it was found that all lipid extracts form a mixture of lamellar and normal isotropic liquid crystalline phases. This is an anomalous behaviour since the nonlamellar phases formed by total lipid extracts are generally of the reversed type.  相似文献   

19.
Low ionic strength aqueous dispersion of dimyristoyl phosphatidylglycerol (DMPG) presents a rather peculiar gel-fluid thermal transition behavior. The lipid main phase transition occurs over a large temperature interval (ca. 17 degrees C), along which several calorimetric peaks are observed. Using lipids spin labeled at the acyl chain end, a two-peak electron spin resonance (ESR) spectrum is observed along that temperature transition region (named intermediate phase), at three different microwave frequencies: L-, X- and Q-bands. The intermediate phase ESR spectra are analyzed, and shown to be most likely due to spin labels probing two distinct types of lipid organization in the DMPG bilayer. Based on the ESR spectra parameters, a model for the DMPG intermediate phase is proposed, where rather fluid and hydrated domains, possibly high curvature regions, coexist with patches that are more rigid and hydrophobic.  相似文献   

20.
A basis for the reorganization of the bilayer structure in biological membranes is the different aggregate structures formed by lipids in water. The phase equilibria of all individual lipids and several in vivo polar lipid mixtures from acyl chain modified membranes of Acholeplasma laidlawii were investigated with different NMR techniques. All dioleoyl (DO) polar lipids, except monoglucosyldiglyceride (MGDG), form lamellar liquid crystalline (L alpha) phases only. The phase diagram of DOMGDG reveals reversed cubic (III), reversed hexagonal (HII), and L alpha phases. In mixtures of DOMGDG and dioleoyldiglycosyldiglyceride (DODGDG), the formation of an III (or HII) phase is enhanced by DOMGDG and low hydration or high temperatures. For in vivo mixtures of all polar DO lipids, a transition from an L alpha to an III phase is promoted by low hydration or high temperatures (50 degrees C). The phospholipids are incorporated in this III phase. Likewise, III and HII phases are formed at similar temperatures in a series of in vivo mixtures with different extents of acyl chain unsaturation. However, their melting temperatures (Tm) vary in an expected manner. All cubic and hexagonal phases, except the III phase with DOMGDG, exist in equilibrium with excess water. The maximum hydration of MGDG and DGDG is similar and increases with acyl chain unsaturation but is substantially lower than that for, e.g., phosphatidylcholine. The translational diffusion of the lipids in the cubic phases is rapid, implying bicontinuous structures. However, their appearances in freeze-fracture electron microscope pictures are different. The III phase of DOMGDG belongs to the Ia3d space group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号