首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differentiation of muscle fiber types in the chicken hindlimb   总被引:4,自引:0,他引:4  
The differentiation of myotubes into fiber types was studied by examining the ATPase staining characteristics of chicken embryo thigh muscles. Two distinct fiber types, designated type IEMB and IIEMB, could be distinguished as early as stage 29. Paralysis of the embryo with d-tubocurarine prevented the differentiation of type IEMB but not type IIEMB characteristics. The two embryonic fiber types differed from each other, and mature type I and II fibers, in the acid and alkali labilities of their ATPases. Myotubes which were type IEMB at stage 29 matured into type I fibers, whereas those which were type IIEMB predominantly but not exclusively developed into type II fibers. The process of maturation involved sequential changes in the staining characteristics of the myotubes. Thus, the ultimate fiber type of a myotube can be detected long before it expresses its mature characteristics.  相似文献   

2.
The differentiation of distinct myotube fiber types in chick limb muscle development is coincident with innervation. The role of motoneurons in influencing fiber type differentiation was analyzed by causing chick hind limb muscles to be innervated by inappropriate motoneurons and then examining experimental muscles for changes in the distribution of myosin ATPase fiber types. Motoneuron innervation of limb muscles was altered by performing either limb shifts, limb reversals, or large spinal cord reversals on early neural tube or limb bud stage chick embryos. The distribution of fiber types was then analyzed in muscles from stage 36 (E10) to stage 45 (E20) embryos after processing hind limb sections for myosin ATPase histochemistry. In the majority of experimental muscles examined (267/312), the distribution of myosin ATPase fiber types was unaltered. In the remaining experimental muscles (14%), alterations in the distribution of myosin ATPase fiber types occurred, indicating that in some cases, foreign innervation may alter the developmental program of differentiating myotubes. The results suggest that myotubes differentiate myosin ATPase staining characteristics according to an intrinsic program and that these differentiating myotubes are selectively innervated by motoneurons of the appropriate type under most conditions including normal development. Under exceptional circumstances of motoneuron-muscle fiber type mismatch, embryonic motoneurons can alter fiber type expression.  相似文献   

3.
Cross-reinnervation studies performed ex ovo with newly hatched chicks demonstrate that peripheral motor neurons control the phenotypic characteristics of avian muscles. The present experiments were designed to determine whether or not nerves play a similar role during the initial expression of muscle fiber types. Previous experiments indicated that differentiation of specific fiber types occurs during the first week of embryogenesis, temporally coincident with the penetration of nerves within muscle masses. These observations suggested that peripheral nerves may be associated with the initial differentiation of fiber types. To test this hypothesis directly, anterior limb buds of the chick embryo were rendered aneurogenic by deletion of the brachial segment of the neural tube. To ensure a completely aneurogenic environment for developing brachial muscles, surgery was performed at day 2 in ovo before the exit of ventral root fibers. Experimental and control embryos from Stage (St) 25 (4.5 d) through St 45 (19d) were analyzed histochemically by a silver-cholinesterase reaction to detect nerves and by the myosin ATPase reaction, following alkali and acid preincubation, to determine the fiber type composition of the muscles. In addition, the total volume of aneurogenic and control muscles was compared. Results demonstrate that the characteristic myosin ATPase profiles of individual aneurogenic and innervated (control) muscles were identical throughout the entire period analyzed. Therefore, we conclude that these enzymic profiles are endogenously expressed and are not under neuronal control during early embryogenesis. Furthermore, the entire sequence of events from the migration of myogenic cells to the anterior limb bud through the division of the primary muscle masses to form individual brachial muscles proceeded on schedule in the absence of nerves. Since the growth of aneurogenic muscles was impaired, we conclude that during embryogenesis peripheral motor nerves are necessary initially for the proper growth of muscles and ultimately, for their survival. They are not involved, however, with either the initial formation or initial differentiation of individual brachial muscles.  相似文献   

4.
The pattern of innervation in 13 chicken hindlimb muscles was studied at various stages of development in order to examine the mechanisms which regulate its formation. The pattern of innervation was visualized by examining the distribution of fiber types within each muscle. It was found that the fiber type which a myotube acquired was influenced by both its time of formation and its position within a muscle. The earliest generation of myotubes (primary) had a marked tendency to become type I fibers, whereas, in contrast, the later generation of myotubes (secondary) tended to differentiate into type II fibers. There were regions of muscle, however, in which primary myotubes differentiated into type II fibers and other regions in which secondary myotubes acquired type I characteristics. During the development of some muscles the pattern of fiber types changed as a result of either a selective loss of type I fibers or, in other cases, a rearrangement of some of the initial neuromuscular contacts. These observations are consistent with the pattern of innervation of a muscle being established as a result of differential projection patterns of fast and slow motoneurons and the existence of some type of chemoaffinity where particular myotubes are preferentially innervated by particular motoneurons.  相似文献   

5.
The characteristics of the medial and lateral superficial extensor muscles (sem and sel) in the crayfish Orconectes limosus abdomen and their developmental and activity-dependent plasticity were studied. It was shown that both muscles are innervated by at least five excitatory and one inhibitory motor neuron in a nonuniform pattern. The muscles are composed of at least three different mATPase histochemistry-based fiber types that are all different from a fourth type in the uniform deep extensor muscles. sem and sel are composed of different ratios of these fiber types but do not show a constant fiber type pattern between segments and even between hemisegments. The three histochemically defined superficial extensor-fiber types have characteristic electrophysiological properties. The fiber types were shown to develop successively during the first postembryonic stages of development without a change in the number of muscle fibers. Based on histochemical ATPase staining after 21 days of chronic stimulation by means of an implantable, double-hook electrode, we show preliminary evidence that the fiber composition in the sem can switch from the presumably fast fiber type III to an intermediate type II. Repeated axotomy up to 53 days had no effect on the fiber type composition of the muscles.  相似文献   

6.
In histochemical investigations of skeletal muscle, the fibers are commonly classified into three types according to their staining for myofibrillar ATPase (mATPase). In serial sections of skeletal muscles from normal Wistar rats, we compared two common staining methods for mATPase: (a) an ac-ATPase technique, with pre-incubation at pH 4.7, and (b) a fixed alk-ATPase technique, using treatment with 5% paraformaldehyde followed by pre-incubation at pH 10.4. In addition, the same fibers were stained in subsequent serial sections for succinate dehydrogenase (SDH) activity. Staining intensities were objectively evaluated by microphotometric measurements of optical density. Combining both mATPase methods in consecutive serial sections ("two-dimensional approach") led to the identification of four distinct clusters of fibers: Types I, IIA, and two subgroups of Type IIB, as separated by their staining densities for fixed alk-ATPase (IIBd dark, IIBm moderate). The mean intensity of SDH staining per fiber type, as measured in the central core of the fibers, was ranked such that IIA greater than I greater than IIBd greater than IIBm. The analyzed muscles (tibialis anterior, biceps brachii) were markedly heterogeneous with respect to the topographic distribution of different fiber types. In comparison to other muscle portions, the regions containing Type I fibers ("red" portions) showed a higher IIBd vs IIBm ratio and more intense SDH staining for either subtype of the IIB fibers. The IIBd fibers probably correspond to the Type 2X fibers of Schiaffino et al.  相似文献   

7.
This study is an attempt to objectively evaluate age-related changes in human muscles by use of histomorphometric methods. Aging in humans induces dramatic transformations in the skeletal muscles but little is known as to whether or not the aging processes per se may affect all muscles equally. In this study aging of two human muscles with different functions, origin and nerve supply is compared. Sections were cut from masseter and vastus lateralis muscles obtained from young adults aged 18-24 years and from the very old aged 90-102 years. Muscle fiber types were classified with the traditional myofibrillar ATPase staining. Various histomorphometric parameters of the different fiber types in human masseter and vastus lateralis muscle sections were obtained by image analyses to evaluate the age-related changes in the muscle fibers. The following variables were calculated: the number of each fiber type per photographed area; the area of each fiber and two indicators for the shape of the muscle fibers. In the aging muscles there was no relative preferential loss of a fiber type. High numbers of intermediate ATPase-stained fibers (IM fibers) were found in some old vastus muscles but were only sporadic in young vastus muscles. However, there was no change in the percentage distribution of intermediate ATPase-stained fibers when young and very old human masseter muscles were compared. Incubation of the sections with antimyosin antibodies showed that the IM fibers in old masseter and old vastus contained different myosin heavy chains. Thus ATPase activity and anti-myosin staining displayed a somewhat different pattern of fiber type distribution. The main changes in the shape and area indicated that type I fibers in the masseter became more circular while in the vastus they decreased significantly in size. The type II fibers in the vastus became very small and deviated significantly from circularity whereas the type II fibers in the masseter only exhibited a decrease in the size of the fibers. Histomorphometric measurements show that aging affects different human muscles in various ways.  相似文献   

8.
Summary The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar.Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

9.
The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar. Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

10.
Role of nerve and muscle factors in the development of rat muscle spindles   总被引:2,自引:0,他引:2  
The soleus muscles of fetal rats were examined by electron microscopy to determine whether the early differentiation of muscle spindles is dependent upon sensory innervation, motor innervation, or both. Simple unencapsulated afferent-muscle contacts were observed on the primary myotubes at 17 and 18 days of gestation. Spindles, encapsulations of muscle fibers innervated by afferents, could be recognized early on day 18 of gestation. The full complement of spindles in the soleus muscle was present at day 19, in the region of the neuromuscular hilum. More afferents innervated spindles at days 18 and 19 of gestation than at subsequent developmental stages, or in adult rats; hence, competition for available myotubes may exist among afferents early in development. Some of the myotubes that gave rise to the first intrafusal (bag2) fiber had been innervated by skeletomotor (alpha) axons prior to their incorporation into spindles. However, encapsulated intrafusal fibers received no motor innervation until fusimotor (gamma) axons innervated spindles 3 days after the arrival of afferents and formation of spindles, at day 20. The second (bag1) intrafusal fiber was already formed when gamma axons arrived. Thus, the assembly of bag1 and bag2 intrafusal fibers occurs in the presence of sensory but not gamma motor innervation. However, transient innervation of future bag2 fibers by alpha axons suggests that both sensory and alpha motor neurons may influence the initial stages of bag2 fiber assembly. The confinement of nascent spindles to a localized region of the developing muscle and the limited number of spindles in developing muscles in spite of an abundance of afferents raise the possibility that afferents interact with a special population of undifferentiated myotubes to form intrafusal fibers.  相似文献   

11.
We show that PTP1D, a protein tyrosine phosphatase that contains two SH2 domains, is preferentially expressed in slow skeletal muscle fibers. Immunohistochemical staining using polyclonal antibodies against PTP1D demonstrated that PTP1D was expressed in a subpopulation of rodent muscle fibers. These fibers were identified as slow Type I fibers based on histochemical ATPase assays and slow myosin heavy chain expression. Northern and Western analyses showed that PTP1D levels were higher in predominantly slow muscles than in predominantly fast muscles. This differential expression of PTP1D in slow muscle fibers appeared by birth. In cultures of mouse myogenic cells, PTP1D was expressed after MyoD and myogenin and appeared in myotubes derived from embryonic, fetal, and postnatal myoblasts. Remarkably, PTP1D was organized into sarcomeres in a pattern coincident with myosin heavy chain, suggesting that PTP1D associates with a component of the thick filament. These results show that PTP1D is preferentially expressed in slow muscle fibers. We speculate that PTP1D may play a role in slow muscle fiber function and differentiation.  相似文献   

12.
Sensory and motor fibers of peripheral nerves were irreversibly destroyed in fetal rats by administering beta bungarotoxin (BTX) on embryonic day 16 or 17, after assembly of primary myotubes, but before the formation of muscle spindles. Soleus muscles of toxin-treated fetuses and their untreated littermates were removed just prior to birth and were examined by light microscopy of serial transverse sections for the presence of spindles and immunocytochemical expression of several isoforms of myosin heavy chains (MHC). Untreated muscles exhibited numerous spindles that were innervated by branches of intramuscular nerves and contained muscle fibers expressing a slow-tonic MHC isoform characteristic of the intrafusal but not extrafusal fibers. Toxin-treated muscles were devoid of intramuscular nerve bundles and perineurial structures. Encapsulations of muscle fibers resembling spindles were absent and no myotubes expressed the slow-tonic MHC isoform associated with intrafusal fibers in beta BTX-treated muscles. Thus, the assembly of muscle spindles, formation of the spindle capsule, and transformation of undifferentiated myotubes into the intrafusal fibers that contain spindle-specific myosin isoforms all depend on the presence of innervation in prenatal rat muscles.  相似文献   

13.
J Kucera 《Histochemistry》1981,73(3):397-418
Muscle spindles were examined histochemically in serial transverse sections of cat tenuissimus muscles. The myofibrillar adenosine triphosphatase (ATPase) staining reaction was used to identify nuclear bag1, bag2 and nuclear chain intrafusal muscle fibers. Regional differences in ATPase staining occurred along the bag1 and bag2 fibers but not along the chain fibers. All intrafusal fiber types displayed regional variability in staining for nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR). Motor nerve terminals were demonstrated along the poles of bag1, bag2 and chain fibers by staining for cholinesterase (ChE). There was no consistent spatial correlation between the intensity of regional ATPase staining along the bag fibers and location, number or type of motor endings. However, most ChE deposits occurred in intrafusal fiber regions that displayed the greatest NADH-TR variability. Some fiber poles or whole intrafusal fibers were devoid of any ChE deposits but their ATPase and NADH-TR content was comparable to that of fibers bearing ChE deposits. The observations suggested that motor nerve fibers per se may not play a major role in determining the histoenzymatic content of intrafusal fibers.  相似文献   

14.
Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-microns frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type. The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofibrils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for 'myofibrillar' adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation. Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

15.
We have identified three sarcolemma-associated antigens, including two antigens that are differentially distributed on skeletal muscle fibers of the fast, fast/slow, and slow types. Monoclonal antibodies were prepared using partially purified membranes of adult chicken skeletal muscles as immunogens and were used to characterize three antigens associated with the sarcolemma of muscle fibers. Immunofluorescence staining of cryosections of adult and embryonic chicken muscles showed that two of the three antigens differed in expression by fibers depending on developmental age and whether the fibers were of the fast, fast/slow, or slow type. Fiber type was assigned by determining the content of fast and slow myosin heavy chain. MSA-55 was expressed equally by fibers of all types. In contrast, MSA-slow and MSA-140 differed in their expression by muscle fibers depending on fiber type. MSA-slow was detected exclusively at the periphery of fast/slow and slow fibers, but was not detected on fast fibers. MSA-140 was detected on all fibers but fast/slow and slow fibers stained more intensely suggesting that these fiber types contain more MSA-140 than fast fibers. These sarcolemma-associated antigens were developmentally regulated in ovo and in vitro. MSA-55 and MSA-140 were detected on all primary muscle fibers by day 8 in ovo of embryonic development, whereas MSA-slow was first detected on muscle fibers just before hatching. Those antigens expressed by fast fibers (MSA-55 and MSA-140) were expressed only after myoblasts differentiated into myotubes, but were not expressed by fibroblasts in cell culture. Each antigen was also detected in one or more nonskeletal muscle cell types: MSA-55 and MSA-slow in cardiac myocytes and smooth muscle of gizzard (but not vascular structures) and MSA-140 in cardiac myocytes and smooth muscle of vascular structures. MSA-55 was identified as an Mr 55,000, nonglycosylated, detergent-soluble protein, and MSA-140 was an Mr 140,000, cell surface protein. The Mr of MSA-slow could not be determined by immunoblotting or immunoprecipitation techniques. These findings indicate that muscle fibers of different physiological function differ in the components associated with the sarcolemma. While the function of these sarcolemma-associated antigens is unknown, their regulated appearance during development in ovo and as myoblasts differentiate in culture suggests that they may be important in the formation, maturation, and function of fast, fast/slow, and slow muscle fibers.  相似文献   

16.
In the normal and randomly reinnervated plantaris muscle of rat staining for succinic dehydrogenase (SDH) activity differentiates three fiber types (A, B and C), staining for myofibrillar adenosine triphosphatase (ATPase) differentiates three fiber types (alpha, beta and alpha beta). Here we present our finding type A corresponds to alpha beta fibers, B to beta or alpha beta, C to alpha or alpha beta. In normal soleus muscle both classifications were found to be compatible and B fibers correspond to beta and C to alpha fibers. An exception is the small percent of alpha beta fibers which correspond to B type. In randomly reinnervated soleus muscle changes in ATPase activity are not followed by changes in SDH staining and B fibers correspond to alpha, beta or alpha beta types.  相似文献   

17.
Do muscle fiber properties commonly associated with fiber types in adult animals and the population distribution of these properties require normal activation patterns to develop? To address this issue, the activity of an oxidative [succinic dehydrogenase (SDH)] and a glycolytic [alpha-glycerophosphate dehydrogenase (GPD)] marker enzyme, the characteristics of myosin adenosinetriphosphatase (myosin ATPase, alkaline preincubation), and the cross-sectional area of single fibers were studied. The soleus and medial gastrocnemius of normal adult cats were compared with cats that 6 mo earlier had been spinally transected at T12-T13 at 2 wk of age. In control cats, SDH activity was higher in dark than light ATPase fibers in the soleus and higher in light than dark ATPase fibers in the medial gastrocnemius. After transection, SDH activity was similar to control in both muscles. GPD activity appeared to be elevated in some fibers in each fiber type in both muscles after transection. The cross-sectional areas most affected by spinal transection were light ATPase fibers of the soleus and dark ATPase fibers of the medial gastrocnemius, the predominant fiber type in each muscle. These data demonstrate that although the muscle fibers of cats spinalized at 2 wk of age presumably were never exposed to normal levels of activation, the activity of an oxidative marker enzyme was maintained or elevated 6 mo after spinal transection. Furthermore, although the absolute enzyme activities in some fibers were elevated by transection, three functional protein systems commonly associated with fiber types, i.e., hydrolysis of ATP by myosin ATPase and glycolytic (GPD) and oxidative (SHD) metabolism, developed in a coordinated manner typical of normal adult muscles.  相似文献   

18.
Summary Muscle spindles were examined histochemically in serial transverse sections of cat tenuissimus muscles. The myofibrillar adenosine triphosphatase (ATPase) staining reaction was used to identify nuclear bag1, bag2 and nuclear chain intrafusal muscle fibers. Regional differences in ATPase staining occurred along the bag1 and bag2 fibers but not along the chain fibers. All intrafusal fiber types displayed regional variability in staining for nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR). Motor nerve terminals were demonstrated along the poles of bag1, bag2 and chain fibers by staining for cholinesterase (ChE). There was no consistent spatial correlation between the intensity of regional ATPase staining along the bag fibers and location, number or type of motor endings. However, most ChE deposits occurred in intrafusal fiber regions that displayed the greatest NADH-TR variability. Some fiber poles or whole intrafusal fibers were devoid of any ChE deposits but their ATPase and NADH-TR content was comparable to that of fibers bearing ChE deposits. The observations suggested that motor nerve fibers per se may not play a major role in determining the histoenzymatic content of intrafusal fibers.  相似文献   

19.
The degree of minced rat muscle regeneration in the absence of nerve fibers was compared with that of normal regenerates between one and 270 days postoperatively. Up to around 30 days, the number of muscle fibers and their morphology were comparable in both normal innervated and denervated regenerates; both showed clear cross striations and peripherally located nuclei. Histochemically, SDH and myofibrillar ATPase (pH=9.4) reactions were positive, but there were no typical signs of fiber types in either case of regeneration. The only consistent difference in the early period was the smaller fiber cross sectional areas in denervated regenerates than in innervated ones. Starting about 40 days, the muscle fibers in innervated regenerates became differentiated into different fiber types (fast-twitch-oxidative-glycolytic, FOG., fast-twitch-glycolytic, FG., slow-twitch-oxidative, SO.) but there were no such activities in denervated regenerates, although their SDH and myofibrillar ATPase reactions remained positive for a long time. Degenerating muscle fibers could no longer be identified in innervated regenerates. In the denervated regenerates, however, muscle fibers underwent atrophic or degenerative changes and were replaced by connective tissue. The complete disappearance of muscle fibers varied with individual regenerates. In some cases, it occurred about 90 days and in others, traces of muscle fibers could still be seen as late as 150 days postoperatively. Thus, nerves seem to be important primarily in the late phase of regeneration; namely, differentiation of fiber types and maintenance of the structural integrity of muscle fibers.  相似文献   

20.
Summary Carbonic anhydrase (CA III) and myoglobin contents from isolated human muscle fibers were quantified using a sensitive time-resolved fluoroimmunoassay. Human psoas muscle specimens were freeze-dried, and single fibers were dissected out and classified into type I, IIA and IIB by myosin ATPase staining. Fiber typing was further confirmed by SDS-PAGE. CA III and myoglobin were found in all fiber types. Type I fibers contained higher concentrations of CA III and myoglobin than type IIA and IIB fibers. The relative concentrations of CA III in type IIA and IIB fibers were respectively 24% and 10% of that in type I fibers. The relative concentrations of myoglobin in type IIA and IIB fibers were 60% and 28% of that in type I fibers. Anti-CA III immunoblotting results from fiber-specific pooled samples agreed well with quantitative measurements. The results indicate that CA III is a more specific marker than myoglobin for type I fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号