首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium · calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium · calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium · calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+40Ca2+ exchange.  相似文献   

2.
Canine cardiac sarcoplasmic reticulum is phosphorylated by an endogenous calcium X calmodulin-dependent protein kinase and phosphorylation occurs mainly on a 27 kDa proteolipid, called phospholamban. To determine whether this phosphorylation has any effect on Ca2+ release, sarcoplasmic reticulum vesicles were phosphorylated by the calcium X calmodulin-dependent protein kinase, while non-phosphorylated vesicles were preincubated under identical conditions but in the absence of ATP to avoid phosphorylation. Both non-phosphorylated and phosphorylated vesicles were centrifuged to remove calmodulin, and subsequently used for Ca2+ release studies. Calcium loading was carried out either by the active calcium pump or by incubation with high (5 mM) calcium for longer periods. Phosphorylation of sarcoplasmic reticulum by calcium X calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca2+ released from cardiac sarcoplasmic reticulum vesicles loaded under passive conditions and on the apparent 45Ca2+-40Ca2+ exchange from cardiac sarcoplasmic reticulum vesicles loaded under active conditions. Thus, it appears that calcium X calmodulin-dependent protein kinase mediated phosphorylation of cardiac sarcoplasmic reticulum is not involved in the regulation of Ca2+ release and 45Ca2+-40Ca2+ exchange.  相似文献   

3.
H.Linton Wray  R.Richard Gray 《BBA》1977,461(3):441-459
Ca2+-activated ATPase (EC 3.6.1.15) in canine cardiac sarcoplasmic reticulum was stimulated 50–80% by cyclic adenosine 3′ : 5′-monophosphate. The relationship of this stimulation to cyclic AMP-dependent membrane phosphorylation with phosphoester bands was studied. Cyclic AMP stimulation of ATPase activity was specific for Ca2+-activated ATPase and was half-maximal at about 0.1 μM which is similar to the concentration required for half-maximal stimulation of membrane phosphorylation by endogenous cyclic AMP-stimulated protein kinase (EC 2.7.1.37). Cyclic AMP stimulation of Ca2+-activated ATPase was calcium dependent and maximal at calculated Ca2+ concentrations of 2.0 μM. Cyclic AMP-dependent Ca2+-activated ATPase correlated well with the cyclic AMP-dependent membrane phosphorylation of which 80% was 20 000 molecular weight protein identified by sodium dodecyl sulfate discontinuous polyacrylamide gel electrophoresis. In trypsin-treated microsomes, cyclic AMP did not stimulate Ca2+-activated ATPase or phosphorylation of the 20 000 molecular weight membrane protein. An endogenous calcium-stimulated protein kinase (probably phosphorylase b kinase) with an apparent Km for ATP of 0.21–0.32 mM was present and appeared to be involved in the cyclic AMP-dependent phosphorylation of the 20 000 molecular weight protein which was calcium dependent. Cyclic guanosine 3′ : 5′-monophosphate did not inhibit any of the stimulatory effects of cyclic AMP. These data suggest that the cyclic AMP stimulation of Ca2+-activated ATPase in cardiac sarcoplasmic reticulum is mediated by the 20 000 molecular weight phosphoprotein product of a series of kinase reactions similar to those activating phosphorylase b.  相似文献   

4.
Canine cardiac sarcoplasmic reticulum is phosphorylated by cyclic AMP-dependent and by Ca2+-calmodulin-dependent protein kinases on a 22 kDa protein, called phospholamban. Both types of phosphorylation have been shown to stimulate the initial rates of Ca2+ transport. To establish the interrelationship of the cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation on Ca2+ transport, cardiac sarcoplasmic reticulum vesicles were preincubated under optimum conditions for: (a) cAMP-dependent phosphorylation, (b) Ca2+-calmodulin-dependent phosphorylation, and (c) combined cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation. Control vesicles were treated under identical conditions, but in the absence of ATP, to avoid phosphorylation. Control and phosphorylated sarcoplasmic reticulum vesicles were subsequently centrifuged and assayed for Ca2+ transport in the presence of 2.5 mM Tris-oxalate. Our results indicate that cAMP-dependent and Ca2+-calmodulin-dependent phosphorylation can each stimulate calcium transport in an independent manner and when both are operating, they appear to have an additive effect. Stimulation of Ca2+ transport was associated with a statistically significant increase in the apparent affinity for calcium by each type of phosphorylation. The degree of stimulation of the calcium affinity was relatively proportional to the degree of phospholamban phosphorylation. These findings suggest the presence of a dual control system which may operate in independent and combined manners for regulating cardiac sarcoplasmic reticulum function.  相似文献   

5.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

6.
Calcium-, calmodulin-dependent phosphorylation of cardiac sarcoplasmic reticulum increases the rate of calcium transport. The complex dependence of calmodulin-dependent phosphoester formation on free calcium and total calmodulin concentrations can be satisfactorily explained by assuming that CaM · (Ca2+)4 is the sole calmodulin-calcium species which activates the calcium-, calmodulin-dependent, membrane-bound protein kinase. The apparent dissociation constant of the E · CaM · (Ca2+)4 complex determined from the calcium dependence of calmodulin-dependent phosphoester formation over a 100-fold range of total calmodulin concentrations (0.01–1 μ M) was 0.9 nM; the respective apparent dissoclation constant at 0.8 mM free calcium, 1 mM free magnesium with low calmodulin concentrations (0.1–50 nM) was 2.60 nM. These results are in good agreement with the apparent dissociation constant of 2.54 nM of high affinity calmodulin binding determined by 125I-labelled calmodulin binding to sarcoplasmic reticulum fractions at 1 mM free calcium, 1 mM free magnesium and total calmodulin concentration ranging from 0.1 to 150 nM, i.e. conditions where approximately 98% of the total calmodulin is present as CaM · (Ca2+)4. The apparent dissociation constant of the calcium-free calmodulin-enzyme complex (E · CaM) is at least 100-fold greater than the apparent dissociation constant of the E · CaM · (Ca2+)4 complex, as judged from non-saturation 125I-labelled calmodulin binding at total calmodulin concentrations of up to 150 nM, in the absence of calcium.  相似文献   

7.
Cardiac sarcoplasmic reticulum is phosphorylated by a cytosolic Ca2+-activated, phospholipid-dependent protein kinase. This phosphorylation is independent of cyclic nucleotides and enhanced by unsaturated diacylglycerols; saturated diacylglycerols, mono- and tri-glycerides are ineffective. Diacylglycerol stimulation is due to increased Ca2+ sensitivity of the kinase reaction. Protein kinase catalyzed phosphorylation results in enhanced Ca2+-transport ATPase activity and may be an important determinant of cardiac sarcoplasmic reticulum function.  相似文献   

8.
Solubilized Ca2+, Mg2+-ATPase of sarcoplasmic reticulum was phosphorylated with ATP without added MgCl2. The phosphoenzyme formed was ADP-sensitive. Ca2+ in the medium was chelated after phosphorylation. This induced a slow transition of the phosphoenzyme from ADP-sensitive to ADP-insensitive forms. The ADP-sensitivity was restored by subsequent addition of CaCl2. These results showed that the transition was caused by dissociation of Ca2+ bound to the phosphoenzyme. Further observations indicated that, when Ca2+ in the medium was chelated, Ca2+ bound to the phosphoenzyme was dissociated much more slowly than Ca2+ bound to the dephosphoenzyme. This suggests a possible formation of the occluded form of the Ca2+-binding site in the phosphoenzyme.  相似文献   

9.
Although dilated cardiomyopathy (DCM) is known to result in cardiac contractile dysfunction, the underlying mechanisms are unclear. The sarcoplasmic reticulum (SR) is the main regulator of intracellular Ca2+ required for cardiac contraction and relaxation. We therefore hypothesized that abnormalities in both SR function and regulation will contribute to cardiac contractile dysfunction of the J2N-k cardiomyopathic hamster, an appropriate model of DCM. Echocardiographic assessment indicated contractile dysfunction, because the ejection fraction, fractional shortening, cardiac output, and heart rate were all significantly reduced in J2N-k hamsters compared with controls. Depressed cardiac function was associated with decreased cardiac SR Ca2+ uptake in the cardiomyopathic hamsters. Reduced SR Ca2+ uptake could be further linked to a decrease in the expression of the SR Ca2+-ATPase and cAMP-dependent protein kinase (PKA)-mediated phospholamban (PLB) phosphorylation at serine-16. Depressed PLB phosphorylation was paralleled with a reduction in the activity of SR-associated PKA, as well as an elevation in protein phosphatase activity in J2N-k hamster. The results of this study suggest that an alteration in SR function and its regulation contribute to cardiac contractile dysfunction in the J2N-k cardiomyopathic hamster. sarcoplasmic reticulum; cardiomyopathy; cAMP-dependent protein kinase; Ca2+/calmodulin-dependent protein kinase; sarco(endo)plasmic reticulum ATPase; phospholamban  相似文献   

10.
The coupling mechanism of sarcoplasmic reticulum ATPase is based on the reciprocal influence of calcium binding and phosphorylation domains. Cooperative calcium binding activates the enzyme, permitting utilization of ATP by transfer of its terminal phosphate to the enzyme. Occupancy of the phosphorylation domain then produces internalization and dissociation of the bound calcium. Hydrolytic cleavage of Pi completes the catalytic and transport cycle. Conversely, the phosphorylated enzyme intermediate can be formed with Pi in the absence of Ca2+. This intermediate is then destabilized by calcium binding, permitting formation of ATP by phosphoryl transfer to ADP.  相似文献   

11.
The regulation of the phosphorylation of the acetylcholine receptor in electroplax membranes from Torpedo californica and of purified acetylcholine receptor was investigated. The phosphorylation of the membrane-bound acetylcholine receptor was not stimulated by Ca2+/calmodulin, nor was it inhibited by EGTA, but it was stimulated by the catalytic subunit of cAMP-dependent protein kinase, and was blocked by the protein inhibitor of cAMP-dependent protein kinase. Purified acetylcholine receptor was not phosphorylated by Ca2+/calmodulin-dependent protein kinase activity in electroplax membranes, nor by partially purified Ca2+/calmodulin-dependent protein kinases from soluble or particulate fractions from the electroplax. Of the four acetylcholine receptor subunits, termed α, β, γ and δ, only the γ- and δ-subunits were phosphorylated by the cAMP-dependent protein kinase (+cAMP), or by its purified catalytic subunits.  相似文献   

12.
The extent of the negative cooperativity with MgATP of the Ca2+-stimulated ATPase activity of sarcoplasmic reticulum has been studied with various membrane preparations and under various conditions. Preparations studied were fragmented sarcoplasmic reticulum vesicles, deoxycholate-solubilized and fractionated ATPase, triton extracted reticulum, vesicles reconstituted from either detergent, and limited trypsin digests of the reticulum. Conditions studied were suboptimal, optimal, and inhibitory Ca2+ concentrations; temperatures from 13 to 46 °C; 1 or 5 mm MgCl2; 0.1 m KCl, 0.1 m NaCl, or no added salt; and Triton or deoxycholate present in the assay. With preparations in which vesicles could accumulate Ca2+ ion, the ionophore A23187 was added to prevent inhibition by internal Ca2+ ions. Under all circumstances, the negative cooperativity of MgATP was present (Hill coefficient of 0.2 to 0.8), indicating the persistence of the properties of the enzyme molecule and its lipid environment giving rise to kinetic negative cooperativity. Attempts to measure the number of ATP sites by protection against N-ethylmaleimide inactivation and by binding of an analog suggested, but did not prove, that there was only one specific, active ATP binding site below 0.5 mm. These results are interpreted to be consistent with either of two mechanisms for ATP cooperativity of the Ca2+-stimulated ATPase activity of sarcoplasmic reticulum: (a) a single, high affinity ATP active site and a second, lower affinity “allosteric” activator site; or (b) a single ATP site which demonstrates two affinities through some kinetic mechanism such as a substrate-induced, slow transition.  相似文献   

13.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   

14.
Calmodulin and the regulation of smooth muscle contraction   总被引:8,自引:0,他引:8  
Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.  相似文献   

15.
Summary Active calcium transport by cardiac sarcoplasmic reticulum assumes a central role in the excitation-concentration coupling of the myocardium, in that Ca2+-dependent ATPase (mol.wt. 100 000) of cardiac sarcoplasmic reticulum serves as an energy transducer and a translocator of Ca2+ across the membrane. During the translocation of Ca2+, the ATPase undergoes a complex series of reactions during which the phosphorylated intermediate EP is formed. We documented how the elementary steps of the ATPase reaction are coupled with calcium translocation, and provided evidences to indicate that two key steps of ATPase correspond to the conformational change of the enzyme, and appear to alter the affinity of the enzyme for Ca2+.A line of evidence also indicated that Ca2+-dependent ATPase of cardiac sarcoplasmic reticulum is regulated by a specific protein named phospholamban (mol.wt. 22 000), which serves as a substrate for cyclic AMP-dependent protein kinase. Cyclic AMP-dependent phosphorylation of phospholamban resulted in a marked increase in the rate of turnover of the ATPase, by enhancing the rates of the key elementary steps, i.e. the steps at which the intermediate EP is formed and decomposed. Thus phospholamban is putatively thought to serve as a modulator of Cat2+-dependent ATPase of cardiac sarcoplasmic reticulum. A working model was proposed to interpret the mechanism. Also documented is a possibility that another protein kinase activatable by Ca2+ and calmodulin is functional in regulating the phospholamban-ATPase system, thus suggesting the existence of a dual control system, in which both cyclic AMP- and calmodulin-dependent phosphorylation are in control of the Cat2+-dependent ATPase.Such a control mechanism may provide the interpretation, at the cellular level, that catecholamines exert actions on myocardial contractility. Thus, catecholamine-mediated increases in intracellular cyclic AMP could enhance calcium fluxes across the membrane of sarcoplasmic reticulum, thus resulting in the increased rates of relaxation and, at the same time, the increased rate and extent of contraction. Such a mechanism could also be operational in the tissues, other than the myocardium, in which catecholamines and other hormones serve as the first messenger, producing intracellular cyclic AMP as the second messenger.  相似文献   

16.
Phosphorylation of cardiac junctional and free sarcoplasmic reticulum (SR) by protein kinase C (PKC) isoforms and was investigated. Both SR and PKC were isolated from canine heart. Junctional and free SR vesicles were prepared by calcium-phosphate-loading. The substrate specificities of PKC and PKC were found to be similar in both SR fractions. A high molecular weight junctionally-associated protein was phosphorylated by PKA, PKC and an endogenous Ca2+/calmodulin-dependent protein kinase activity: the highest levels of phosphate incorporation being catalysed by the latter kinase. In addition to this high molecular weight junctionally-associated protein, PKC induced phosphorylation of 45, 96 kDa and several proteins of greater than 200 kDa in junctional SR. A protein of 96 kDa was phosphorylated by both isoforms in junctional and free SR. The major substrate for PKA, PKC, PKC and the Ca2+/calmodulin-dependent protein kinase, in both junctional and free SR, was phospholamban. Although the phosphorylation of phospholamban by PKC was activated by Ca2+, a component of this activity appeared to be independent of Ca2+. PKC-mediated phosphorylation of phospholamban was fully activated by 1 M Ca2+ whereas the Ca2+/calmodulin dependent kinase required concentrations in excess of 5 M Ca2+. In the in vitro system employed in these studies, the concentrations of either PKC or the catalytic subunit of PKA required to phosphorylate phospholamban were found to be similar. In addition, in the presence of a 15 kDa sarcolemmal-associated protein, which becomes phosphorylated upon activation of PKC in vivo, phosphorylation of phospholamban by PKC was unaffected. These results demonstrate that, although substrates for both subtypes are found in both junctional and free SR, PKC and PKC do not show differences in selectivity towards these substrates.Abbreviations Ca2+ free calcium - CaM kinase Ca2+/calmodulin-dependent protein kinase - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis(b-aminoethylether)-N,N,N,N-tetraacetic acid - FSR free sarcoplasmic reticulum - JSR junctional sarcoplasmic reticulum - PKC protein kinase C - PS phosphatidylserine - SDS sodium dodecyl sulfate - SAG 1-stearoyl-2-arachidonylglycerol - TPCK L-1-tosylamido-2-phenylethyl chloromethyl ketone - Tris/HCI tris(hydroxymethyl)aminomethane hydrochloride This work was supported by a grant (to S.K.) from the Heart and Stroke Foundation of B.C. and Yukon. The costs of publication of this article were defrayed in part by the payment of page charges This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.Recipient of a Studentship form the Heart and Stroke Foundation of Canada.  相似文献   

17.
Tryptophan 5-monooxygenase in rat brainstem cytosol was activated about twofold by incubation with 0.5 mm ATP and 5 mm MgCl2. The activation required micromolar concentrations of Ca2+ but was not dependent on either cyclic AMP or cyclic GMP. Rat brain cytosol was shown to possess an endogenous protein kinase which was markedly stimulated by the addition of Ca2+ using endogenous protein substrates. Following activation by ATP and Mg2+ in the presence of Ca2+, tryptophan 5-monooxygenase was reversibly deactivated to the original level by incubation at 30 °C after removal of Ca2+ by adding ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid and was then reactivated by incubation at 30 °C after subsequent addition of Ca2+ and ATP. The deactivation was markedly inhibited by the omission of Mg2+ or by the addition of NaF.  相似文献   

18.
BackgroundCa2+/calmodulin-dependent protein kinase kinase (CaMKK) is a pivotal activator of CaMKI, CaMKIV and 5’-AMP-activated protein kinase (AMPK), controlling Ca2+-dependent intracellular signaling including various neuronal, metabolic and pathophysiological responses. Recently, we demonstrated that CaMKKβ is feedback phosphorylated at Thr144 by the downstream AMPK, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme. However, the regulatory phosphorylation of CaMKKβ at Thr144 in intact cells and in vivo remains unclear.MethodsAnti-phosphoThr144 antibody was used to characterize the site-specific phosphorylation of CaMKKβ in immunoprecipitated samples from mouse cerebellum and in transfected mammalian cells that were treated with various agonists and protein kinase inhibitors. CaMKK activity assay and LC-MS/MS analysis were used for biochemical characterization of phosphorylated CaMKKβ.ResultsOur data suggest that the phosphorylation of Thr144 in CaMKKβ is rapidly induced by cAMP/cAMP-dependent protein kinase (PKA) signaling in CaMKKβ-transfected HeLa cells, that is physiologically relevant in mouse cerebellum. We confirmed that the catalytic subunit of PKA was capable of directly phosphorylating CaMKKβ at Thr144 in vitro and in transfected cells. In addition, the basal phosphorylation of CaMKKβ at Thr144 in transfected HeLa cells was suppressed by AMPK inhibitor (compound C). PKA-catalyzed phosphorylation reduced the autonomous activity of CaMKKβ in vitro without significant effect on the Ca2+/CaM-dependent activity, resulting in the conversion of CaMKKβ into Ca2+/CaM-dependent enzyme.ConclusioncAMP/PKA signaling may confer Ca2+-dependency to the CaMKKβ-mediated signaling pathway through direct phosphorylation of Thr144 in intact cells.General significanceOur results suggest a novel cross-talk between cAMP/PKA and Ca2+/CaM/CaMKKβ signaling through regulatory phosphorylation.  相似文献   

19.
Ca2+ efflux from sarcoplasmic reticulum vesicles was studied by measurements of net Ca2+ uptake, 45Ca2+ flux and hydrolysis of energy-rich phosphate. The maximal Ca2+ uptake capacity (150–200 nmol/mg protein at pH 6.7, 10 mM MgCl2 and μ=0.26) was independent of the nature and concentration of the energy-donating substrate (ATP or carbamyl phosphate) and of temperature (15–35°C), suggesting coupling between influx and efflux of Ca2+. In the presence of high concentrations of ATP, this efflux of Ca2+ was much higher than the passive Ca2+ permeation, measured after ATP or Ca2+ depletion of the reaction medium. Ca2+ efflux was imperceptible at vesicle filling levels below 35–40 nmol Ca2+/mg protein, and uncorrelated to the inhibition of the Ca2+-ATPase by high intravesicular Ca2+ concentrations. Analysis of the data indicated that Ca2+ efflux under our conditions probably is associated with one of the Ca2+-ATPase partial reactions occurring after dephosphorylation, rather than with a reversal of the Ca2+ translocation step in the phosphorylated state of the enzyme. Furthermore, passive Ca2+ permeation may be concurrently reduced during the enzymatically active state. It is proposed that both Ca2+ efflux and passive Ca2+ permeation (Ca2+ outflow) proceed via the same channels which are closed (occluded) during part of the Ca2+-ATPase reaction cycle.  相似文献   

20.
Mobilization of Ca2+sequestered by the endoplasmic reticulum (ER) produces the phosphorylation of initiation factor (eIF) 2, whereas an increase in cytosolic free Ca2+([Ca2+]i) due to plasmalemmal Ca2+influx increases the phosphorylation of elongation factor (eEF) 2. In nucleated mammalian cells, depletion of ER Ca2+stores has been demonstrated to inhibit translational initiation, but evidence that increased [Ca2+]iper se causes slowing of peptide chain elongation is lacking. L-type Ca2+channel activity of GH3pituitary cells, which are enriched in calmodulin-dependent eEF-2 kinase, was manipulated such that the impact of [Ca2+]ion eEF-2 phosphorylation and translational rate could be examined for up to 10 min without inhibiting initiation. At 1 mM extracellular Ca2+, resting [Ca2+]ivalues were high (154–255 nM) and eEF-2 was phosphorylated. The Ca2+channel antagonist, nisoldipine, lowered [Ca2+]iand reduced eEF-2 phosphorylation by half but had no effect on amino acid incorporation. The Ca2+channel agonist, Bay K 8644, produced sustained elevations of [Ca2+]ithat were associated with 25–50% increases in eEF-2 phosphorylation, but no changes in protein synthetic rates occurred. Larger Ca2+influxes were achievable with either 25 mM KCl or KCl plus Bay K 8644. These treatments further increased eEF-2 phosphorylation (50–100% above control) and inhibited leucine incorporation by 20–70% but ATP content was reduced by 25–50% and total cell-associated Ca2+contents rose by 3- to 13-fold. eIF-2α was not phosphorylated during these treatments. Addition of low concentrations of ionomycin, which do not lower ATP content, was associated with complex changes in [Ca2+]ithat resembled alterations in eEF-2 phosphorylation. The inhibition of leucine incorporation in response to ionomycin, however, coincided only with the phosphorylation of eIF-2α, not eEF-2. It is concluded that changes in [Ca2+]ioccurring in the absence of ATP depletion alter the phosphorylation state of eEF-2 but are not regulatory for mRNA translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号