首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Biophysical journal》2021,120(17):3718-3731
The collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport: lipid desorption, which is rate limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.  相似文献   

2.
Non-specific protein adsorption can be reduced by attaching polymer chains by one end to a sorbent surface. End-grafted polymer modified surfaces have also found application in size-based chromatographic bioseparations. To better understand how to tailor surfaces for these applications, a numerical SCF model has been used to calculate theoretical results for the polymer density distribution of interacting polymer chains around a solute particle positioned at a fixed distance from a surface. In addition, the excess energy required to move the particle into the polymer chains (interaction energy) is calculated using a statistical mechanical treatment of the lattice model. The effect of system variables such as particle size, chain length, surface density and Flory interaction parameters on density distributions and interaction energies is also studied. Calculations for the interaction of a solute particle with a surface covered by many polymer chains (a brush) show that the polymer segments will fill in behind the particle quite rapidly as it moves toward the surface. When there is no strong energetic attraction between the polymer and solute we predict that the interaction energy will be purely repulsive upon compression due to losses in conformational entropy of the polymer chains. Above a critical chain length, which depends upon particle size, a maximum in the force required to move the particle toward the surface is observed due to an engulfment of the particle as chains attempt to access the free volume behind the particle. If an attraction exists between the polymer and solute, such that a minimum in the interaction energy is seen, the optimum conditions for solute repulsion occur at the highest surface density attainable. Long chain length can lead to increased solute concentration within the polymer layer due to the fact that an increased number of favourable polymer–solute contacts are able to occur than with short chains at a similar entropic penalty.  相似文献   

3.
We examine the voltage-driven polymer translocation from a spacious region into a confined region imposed by two parallel planes, so that the entry is impeded by the entropic confinement but aided by the electric field inside the confined region. Two modes of entry are examined: linear translocation where a chain enters the confined region with chain ends, and hairpin translocation where a chain enters the confined region by forming a hairpin. Our calculation shows that translocation time increases with polymer length for linear entries but decreases with polymer length for hairpin entries. Applying to electrophoresis of DNA molecules through periodic spacious and confined regions, our theory shows that the dominance of hairpin translocations leads to the experimentally observed faster migration of longer DNA molecules. Our theory predicts experimental conditions for the validity of this law in terms of polymer length, size of the confined region, and solution conditions.  相似文献   

4.
The molecular interaction between common polymer chains and the cell membrane is unknown. Molecular dynamics simulations offer an emerging tool to characterise the nature of the interaction between common degradable polymer chains used in biomedical applications, such as polycaprolactone, and model cell membranes. Herein we characterise with all-atomistic and coarse-grained molecular dynamics simulations the interaction between single polycaprolactone chains of varying chain lengths with a phospholipid membrane. We find that the length of the polymer chain greatly affects the nature of interaction with the membrane, as well as the membrane properties. Furthermore, we next utilise advanced sampling techniques in molecular dynamics to characterise the two-dimensional free energy surface for the interaction of varying polymer chain lengths (short, intermediate, and long) with model cell membranes. We find that the free energy minimum shifts from the membrane-water interface to the hydrophobic core of the phospholipid membrane as a function of chain length. Finally, we perform coarse-grained molecular dynamics simulations of slightly larger membranes with polymers of the same length and characterise the results as compared with all-atomistic molecular dynamics simulations. These results can be used to design polymer chain lengths and chemistries to optimise their interaction with cell membranes at the molecular level.  相似文献   

5.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

6.
Marsh D 《Biophysical journal》2008,94(10):3996-4013
Lipid chain length modulates the activity of transmembrane proteins by mismatch between the hydrophobic span of the protein and that of the lipid membrane. Relative binding affinities of lipids with different chain lengths are used to estimate the excess free energy of lipid-protein interaction that arises from hydrophobic mismatch. For a wide range of integral proteins and peptides, the energy cost is much less than the elastic penalty of fully stretching or compressing the lipid chains to achieve complete hydrophobic matching. The chain length dependences of the free energies of lipid association are described by a model that combines elastic chain extension with a free energy term that depends linearly on the extent of residual mismatch. The excess free energy densities involved lie in the region of 0.5-2.0 kBT.nm−2. Values of this size could arise from exposure of hydrophobic groups to polar portions of the lipid or protein, but not directly to water, or alternatively from changes in tilt of the transmembrane helices that are energetically comparable to those activating mechanosensitive channels. The influence of hydrophobic mismatch on dimerization of transmembrane helices and their transfer between lipid vesicles, and on shifts in chain-melting transitions of lipid bilayers by incorporated proteins, is analyzed by using the same thermodynamic model. Segmental order parameters confirm that elastic lipid chain distortions are insufficient to compensate fully for the mismatch, but the dependence on chain length with tryptophan-anchored peptides requires that the free energy density of hydrophobic mismatch should increase with increasing extent of mismatch.  相似文献   

7.
The effect of channel length on the barrier for potassium ion permeation through single-file channels has been studied by means of all-atom molecular dynamics simulations. Using series of peptidic gramicidin-like and simplified ring-structured channels, both embedded in model membranes, we obtained two distinct types of behavior: saturation of the central free energy barriers for peptidic channels and a linear increase in simplified ring-structured channels with increasing channel length. The saturation of the central free energy barrier for the peptidic channels occurs at relatively short lengths, and it is correlated with the desolvation from the bulk water. Remarkably, decomposition of free energy barriers into enthalpic and entropic terms reveals an entropic cost for ion permeation. Furthermore, this entropic cost dominates the ion permeation free energy barrier, since the corresponding free energy contribution is higher than the enthalpic barrier. We conclude that the length dependence of the free energy is enthalpy-dominated, but the entropy is the major contribution to the permeation barrier. The decrease in rotational water motion and the reduction of channel mobility are putative origins for the overall entropic penalty.  相似文献   

8.
The kinetics of protein adsorption are studied using a generalized diffusion approach which shows that the time-determining step in the adsorption is the crossing of the kinetic barrier presented by the polymers and already adsorbed proteins. The potential of mean-force between the adsorbing protein and the polymer-protein surface changes as a function of time due to the deformation of the polymer layers as the proteins adsorb. Furthermore, the range and strength of the repulsive interaction felt by the approaching proteins increases with grafted polymer molecular weight and surface coverage. The effect of molecular weight on the kinetics is very complex and different than its role on the equilibrium adsorption isotherms. The very large kinetic barriers make the timescale for the adsorption process very long and the computational effort increases with time, thus, an approximate kinetic approach is developed. The kinetic theory is based on the knowledge that the time-determining step is crossing the potential-of-mean-force barrier. Kinetic equations for two states (adsorbed and bulk) are written where the kinetic coefficients are the product of the Boltzmann factor for the free energy of adsorption (desorption) multiplied by a preexponential factor determined from a Kramers-like theory. The predictions from the kinetic approach are in excellent quantitative agreement with the full diffusion equation solutions demonstrating that the two most important physical processes are the crossing of the barrier and the changes in the barrier with time due to the deformation of the polymer layer as the proteins adsorb/desorb. The kinetic coefficients can be calculated a priori allowing for systematic calculations over very long timescales. It is found that, in many cases where the equilibrium adsorption shows a finite value, the kinetics of the process is so slow that the experimental system will show no adsorption. This effect is particularly important at high grafted polymer surface coverage. The construction of guidelines for molecular weight/surface coverage necessary for kinetic prevention of protein adsorption in a desired timescale is shown. The time-dependent desorption is also studied by modeling how adsorbed proteins leave the surface when in contact with a pure water solution. It is found that the kinetics of desorption are very slow and depend in a nonmonotonic way in the polymer chain length. When the polymer layer thickness is shorter than the size of the protein, increasing polymer chain length, at fixed surface coverage, makes the desorption process faster. For polymer layers with thickness larger than the protein size, increases in molecular weight results in a longer time for desorption. This is due to the grafted polymers trapping the adsorbed proteins and slowing down the desorption process. These results offer a possible explanation to some experimental data on adsorption. Limitations and extension of the developed approaches for practical applications are discussed.  相似文献   

9.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pK(a) shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein-lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

10.
A theory of channel-facilitated transport of long rodlike macromolecules through thin membranes under the influence of a driving force of arbitrary strength is developed. Analytic expressions are derived for the translocation probability and the Laplace transform of the probability density of time that a macromolecule spends in the channel. We also derive expressions for the (conditional) probability densities of time spent in the channel by translocating and nontranslocating (returning back) macromolecules. These results are used to study how the distribution of the macromolecule lifetime in the channel depends on a polymer chain length and the driving force. It is shown that depending on the values of the parameters, the lifetime probability density may have one or two peaks. Our theory is a generalization of the theory developed by Lubensky and Nelson, who were inspired by recent experiments on driven translocation of single-stranded RNA and DNA molecules through single channels in narrow membranes.  相似文献   

11.
In this work we present an analytical framework to calculate the average translocation time τ required for an ideal proteinogenic polypeptide chain to cross over a small pore on a membrane. Translocation is considered to proceed as a chain of non-interacting amino acid residues of sequence {Xj} diffuses through the pore against an energy barrier Δℱ, set by chain entropy and unfolding-folding energetics. We analyze the effect of sequence heterogeneity on the dynamics of translocation by means of helical propensity of amino acid residues. In our calculations we use sequences of fifteen well-known proteins that are translocated which span two orders of magnitude in size according to the number of residues N. Results show non-symmetric free energy barriers as a consequence of sequence heterogeneity, such asymmetry in energy may be useful in differentiated directions of translocation. For the fifteen polypeptide chains considered we found conditions when sequence heterogeneity has not a significant effect on the time scale of translocation leading to a scaling law τNν, where ν ∼ 1.6 is an exponent that holds for most ground state energies. We also identify conditions when sequence heterogeneity has a great impact on the time scale of translocation, in consequence, no more scaling laws for τ there exist.  相似文献   

12.
We investigate multilayered helical packaging of double-stranded DNA, or of a general polymer chain with persistence length lb, into an ideal, inert cylindrical container, reaching densities slightly below close packaging. We calculate the free energy as a function of the packaged length, based on the energies for bending, twisting, the suffered entropy loss, and the electrostatic energy in a Debye–Hückel model. In the absence of charges on the packaged polymer, a critical packaging force can be determined, similar to the mechanism involved in DNA unzipping models. When charges are taken into consideration, in the final packaging state the charges which are chemically distant become geometrically close, and therefore a steep rise is seen in the free energy. We argue that due to the extremely ordered and almost closely packaged final state the actual packaging geometry does not influence the behaviour of the free energy, pointing towards a certain universality of this state of the polymer. Our findings are compared to a recent simulations study, showing that the model is sensitive to the screening length.  相似文献   

13.
Aquaporins are an important class of membrane channels selective for water and linear polyols but impermeable to ions, including protons. Recent computational studies have revealed that the relay of protons through the water-conduction pathway of aquaporin channels is opposed by a substantial free energy barrier peaking at the signature NPA motifs. Here, free-energy simulations and continuum electrostatic calculations are combined to examine the nature and the magnitude of the contribution of specific structural elements to proton blockage in the bacterial glycerol uptake facilitator, GlpF. Potential of mean-force profiles for both hop and turn steps of structural diffusion in the narrow pore are obtained for artificial variants of the GlpF channel in which coulombic interactions between the pore contents and conserved residues Asn68 and Asn203 at the NPA signature motifs, Arg206 at the selectivity filter, and the peptidic backbone of the two half-helices M3 and M7, which are arranged in head-to-head fashion around the NPA motifs, are turned off selectively. A comparison of these results with electrostatic energy profiles for the translocation of a probe cation throughout the water permeation pathway indicates that the free-energy profile for proton movement inside the narrow pore is dominated by static effects arising from the distribution of charged and polar groups of the channel, whereas dielectric effects contribute primarily to opposing the access of H+ to the pore mouths (desolvation penalty). The single most effective way to abolish the free-energy gradients opposing the movement of H+ around the NPA motif is to turn off the dipole moments of helices M3 and M7. Mutation of either of the two NPA Asn residues to Asp compensates for charge-dipole and dipole-dipole effects opposing the hop and turn steps of structural diffusion, respectively, and dramatically reduces the free energy barrier of proton translocation, suggesting that these single mutants could leak protons.  相似文献   

14.
The multiphasic kinetics of the protein folding and unfolding processes are examined for a “cluster model” with only two thermodynamically stable macroscopic states, native (N) and denatured (D), which are essentially distributions of microscopic states. The simplest kinetic schemes consistent with the model are: N-(fast) → I-(slow) → D for unfolding and N ← (fast)-D2 ← (slow)-D1 for refolding. The fast phase during the unfolding process can be visualized as the redistribution of the native population N to I within its free energy valley. Then, this population crosses over the free energy barrier to the denatured state D in the slow phase. Therefore, the macrostate I is a kinetic intermediate which is not stable at equilibrium. For the refolding process, the initial equilibrium distribution of the denatured state D appears to be separated into D1 and D2 in the final condition because of the change in position of the free energy barrier. The fast refolding species D2 is due to the “leak” from the broadly distributed D state, while the rest is the slow refolding species D1, which must overpass the free energy barrier to reach N. At an early stage of the folding process the amino acid chain is considered to be composed of several locally ordered regions, which we call clusters, connected by random coil chain parts. Thus, the denatured state contains different sizes and distributions of clusters depending on the external condition. A later stage of the folding process is the association of smaller clusters. The native state is expressed by a maximum-size cluster with possible fluctuation sites reflecting this association. A general discussion is given of the correlation between the kinetics and thermodynamics of proteins from the overall shape of the free energy function. The cluster model provides a conceptual link between the folding kinetics and the structural patterns of globular proteins derived from the X-ray crystallographic data.  相似文献   

15.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pKa shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein–lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

16.
Cornelius F 《Biochemistry》2001,40(30):8842-8851
The effects of phospholipid acyl chain length (n(c)), degree of acyl chain saturation, and cholesterol on Na,K-ATPase reconstituted into liposomes of defined lipid composition are described. The optimal acyl chain length of monounsaturated phosphatidylcholine in the absence of cholesterol was found to be 22 but decreased to 18 in the presence of 40 mol % cholesterol. This indicates that the hydrophobic matching of the lipid bilayer and the transmembrane hydrophobic core of the membrane protein is a crucial parameter in supporting optimal Na,K-ATPase activity. In addition, the increased bilayer order induced by both cholesterol and saturated phospholipids could be important for the conformational mobility of the Na,K-ATPase changing the distribution of conformations. Lipid fluidity was important for several parameters of reconstitution, e.g., the amount of protein inserted and the orientation in the liposomes. The temperature dependence of the Na,K-ATPase as well of the Na-ATPase reactions depends both on phospholipid acyl chain length and on cholesterol. Cholesterol increased significantly both the enthalpy of activation and entropy of activation for Na,K-ATPase activity and Na-ATPase activity of Na,K-ATPase reconstituted with monounsaturated phospholipids. In the presence of cholesterol the free energy of activation was minimum at a lipid acyl chain length of 18, the same that supported maximum turnover. In the case of ATPase reconstituted without cholesterol, the minimum free energy of activation and the maximum turnover both shifted to longer acyl chain lengths of about 22.  相似文献   

17.
The skin barrier function is provided by the stratum corneum (SC). The lipids in the SC are composed of three lipid classes: ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs) which form two crystalline lamellar structures. In the present study, we investigate the effect of CER chain length distribution on the barrier properties of model lipid membranes mimicking the lipid composition and organization of SC. The membranes were prepared with either isolated pig CERs (PCERs) or synthetic CERs. While PCERs have a wide chain length distribution, the synthetic CERs are quite uniform in chain length. The barrier properties were examined by means of permeation studies using hydrocortisone as a model drug. Our studies revealed a reduced barrier in lipid membranes prepared with PCERs compared to synthetic CERs. Additional studies revealed that a wider chain length distribution of PCERs results in an enhanced hexagonal packing and increased conformational disordering of the lipid tails compared to synthetic CERs, while the lamellar phases did not change. This demonstrates that the chain length distribution affects the lipid barrier by reducing the lipid ordering and density within the lipid lamellae. In subsequent studies, the effect of increased levels of FFAs or CERs with a long acyl chain in the PCERs membranes was also studied. These changes in lipid composition enhanced the level of orthorhombic packing, reduced the conformational disordering and increased the barrier of the lipid membranes. In conclusion, the CER chain length distribution is an important key factor for maintaining a proper barrier.  相似文献   

18.
Theories of DNA electrophoretic separations generally treat the DNA as a free draining polymer moving in an electric field at a rate that depends on the effective charge density of the molecule. Separations can occur in sieving media ranging from ultradilute polymer solutions to tightly cross-linked gels. It has recently been shown that DNA is not free-draining when both electric and nonelectric forces simultaneously act on the molecule, as occurs when DNA collides with a polymer during electrophoretic separations. Here we show that a semidilute polymer solution screens the hydrodynamic interaction that results from the application of these forces. Fluorescently labeled DNA tethered at one end in a semidilute solution of hydroxyl-ethyl cellulose stretch more in an electric field than they stretch in free solution, and approach free-draining behavior. The steady stretching behavior is predicted without adjustable parameters by a theory developed by Stigter using a hydrodynamic screening length found from effective medium theory. Data on the relaxation of stretched molecules after the electric field is removed agree with the Rouse model prediction, which neglects hydrodynamic interactions. The slowest relaxation time constant, tau(R), scales with chain length as tau(R) approximately L(1.9+/-0.17) when analyzed by the data collapse method, and as tau(R) approximately L(2.17+/-0.17) when analyzed by multiexponential fit.  相似文献   

19.
A molecular simulation approach has been used to investigate the mechanism of entropic trapping for model linear DNA molecules as they go from a deep channel to a shallow channel driven by an electric field. In such a system, a molecule whose radius of gyration is larger than the gap of the shallow channel will tend to get temporarily trapped at its entrance. The free energy of the molecules as a function of chain position and the trapping times were obtained via Monte Carlo simulations. In weak to moderate electrical fields, the free energy barrier for escape ( F max increases with chain length approaching a plateau value; in a strong electrical field, ( F max exhibits a mild decreasing trend with chain length. At weak electric fields, shorter chains escape faster than longer chains because of their lower associated ( F max . At moderate and strong fields, longer chains escape faster than shorter ones because, in the absence of significant differences in ( F max , larger chains access a larger entrance area to the narrow channel; these results are in agreement with reported experimental observations. Preliminary results on the effect of chain branching on the escape rate are also presented.  相似文献   

20.
The signal recognition particle (SRP) binds to signal sequences when they emerge from a translating ribosome and targets the complex of ribosome, nascent chain and SRP to the membrane of the rough endoplasmic reticulum (rER) allowing the co-translational translocation of the nascent chain. By photo-crosslinking it has been shown that the signal sequence of preprolactin (PPL) only interacts with the methionine-rich (M) domain of the 54 kDa protein subunit (SRP54) of SRP. Here we show that (i) a signal-anchor sequence is likewise crosslinked only to the methionine-rich domain of SRP54, (ii) free SRP54 can interact with signal sequences independently of the other components of SRP, (iii) its M domain suffices to perform this function, and (iv) an essentially intact M domain is required for signal sequence recognition. Alkylation of the N+G domain in intact SRP54 with N-ethyl maleimide (NEM), but not after cleavage with V8 protease, prevents the binding of a signal sequence to the M domain. This suggests a proximity between the N+G and M domains of SRP54 and raises the possibility that the role of the N+G domain may be to regulate the binding and/or the release of signal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号