首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrophoretic mobilities of adsorbed yeast ribonucleic acid have been measured as functions of pH, ionic strength, and biopolymer concentration and the results so obtained have been critically compared with those for adsorbed DNA. Like DNA, ribonucleic acid has also been found to reverse the positive charge of alumina owing to its adsorption on the solid-liquid interface. The mobilities of adsorbed RNA have been found to be less than those of adsorbed DNA under identical conditions. The observed mobilities of adsorbed heat- and alkali-denatured RNA are significantly less than those of adsorbed native RNA at a given pH and ionic strength of the medium. The electrophoretic mobilities as observed also show the evidence of RNA adsorption on the negatively charged surface of Dowex-50 resin, but practically no adsorption of RNA on the negatively charged glass surface has been predicted.  相似文献   

2.
The islet amyloid polypeptide (IAPP) and insulin are coproduced by the β-cells of the pancreatic islets of Langerhans. Both peptides can interact with negatively charged lipid membranes. The positively charged islet amyloid polypeptide partially inserts into these membranes and subsequently forms amyloid fibrils. The amyloid fibril formation of insulin is also accelerated by the presence of negatively charged lipids, although insulin has a negative net charge at neutral pH-values. We used water-polymer model interfaces to differentiate between the hydrophobic and electrostatic interactions that can drive these peptides to adsorb at an interface. By applying neutron reflectometry, the scattering-length density profiles of IAPP and insulin, as adsorbed at three different water-polymer interfaces, were determined. The islet amyloid polypeptide most strongly adsorbed at a hydrophobic poly-(styrene) surface, whereas at a hydrophilic, negatively charged poly-(styrene sulfonate) interface, the degree of adsorption was reduced by 50%. Almost no IAPP adsorption was evident at this negatively charged interface when we added 100 mM NaCl. On the other hand, negatively charged insulin was most strongly attracted to a hydrophilic, negatively charged interface. Our results suggest that IAPP is strongly attracted to a hydrophobic surface, whereas the few positive charges of IAPP cannot warrant a permanent immobilization of IAPP at a hydrophilic, negatively charged surface at an ionic strength of 100 mM. Furthermore, the interfacial accumulation of insulin at a hydrophilic, negatively charged surface may represent a favorable precondition for nucleus formation and fibril formation.  相似文献   

3.
To elucidate the role of protein conformation in the kinetics of adsorption at interfaces, seven structural intermediates of bovine serum albumin were prepared and their adsorption at the air/water interface was studied. Molecular area calculations indicated two distinct molecular processes, the first being the creation of an area, delta A1, for anchoring the molecule during the initial phase of adsorption and the second being the delta A2 cleared during subsequent reorientation and rearrangement of adsorbed molecules at the interface. The delta A1 values for all the albumin intermediates were the same, indicating that the initial work pi delta A1 needed to anchor the molecule at the interface was independent of solution conformation of the protein. Unlike delta A1, delta A2 exhibited a bell-shaped relationship with the extent of refolded state of the intermediates. Calculation of diffusion coefficients indicated that greater the unfolded state of the albumin intermediate, the greater was the diffusion coefficient. It is shown that the simple diffusion theory is inadequate to explain quantitatively the kinetics of protein adsorption. Specific, conformation-dependent, solute-solvent and solute-interface interactions also seem to influence the kinetics of adsorption of proteins.  相似文献   

4.
Unmodified and polyethylene glycol (PEG) modified neutral and negatively charged liposomes were prepared by freeze-thaw and extrusion followed by chromatographic purification. The effects of PEG molecular weight (PEG 550, 2000, 5000), PEG loading (0-15 mol%), and liposome surface charge on fibrinogen adsorption were quantified using radiolabeling techniques. All adsorption isotherms increased monotonically over the concentration range 0-3 mg/ml and adsorption levels were low. Negatively charged liposomes adsorbed significantly more fibrinogen than neutral liposomes. PEG modification had no effect on fibrinogen adsorption to neutral liposomes. An inverse relationship was found between PEG loading of negatively charged liposomes and fibrinogen adsorption. PEGs of all three molecular weights at a loading of 5 mol% reduced fibrinogen adsorption to negatively charged liposomes. Protein adsorption from diluted plasma (10% normal strength) to four different liposome types (neutral, PEG-neutral, negatively charged, and PEG-negatively charged) was investigated using gel electrophoresis and immunoblotting. The profiles of adsorbed proteins were similar on all four liposome types, but distinctly different from the profile of plasma itself, indicating a partitioning effect of the lipid surfaces. alpha2-macroglobulin and fibronectin were significantly enriched on the liposomes whereas albumin, transferrin, and fibrinogen were depleted compared to plasma. Apolipoprotein AI was a major component of the adsorbed protein layers. The blot of complement protein C3 adsorbed on the liposomes suggested that the complement system was activated.  相似文献   

5.
Little is known about the direction and specificity of protein adsorption to solid surfaces, a knowledge that is of great importance in many biotechnological applications. To resolve the direction in which a protein with known structure and surface potentials binds to negatively charged silica nanoparticles, fluorescent probes were attached to different areas on the surface of the protein human carbonic anhydrase II. By this approach it was clearly demonstrated that the adsorption of the native protein is specific to limited regions at the surface of the N-terminal domain of the protein. Furthermore, the adsorption direction is strongly pH-dependent. At pH 6.3, a histidine-rich area around position 10 is the dominating adsorption region. At higher pH values, when the histidines in this area are deprotonated, the protein is also adsorbed by a region close to position 37, which contains several lysines and arginines. Clearly the adsorption is directed by positively charged areas on the protein surface toward the negatively charged silica surface at conditions when specific binding occurs.  相似文献   

6.
The influence of protein stability on the adsorption and desorption behavior to surfaces with fundamentally different properties (negatively charged, positively charged, hydrophilic, and hydrophobic) was examined by surface plasmon resonance measurements. Three engineered variants of human carbonic anhydrase II were used that have unchanged surface properties but large differences in stability. The orientation and conformational state of the adsorbed protein could be elucidated by taking all of the following properties of the protein variants into account: stability, unfolding, adsorption, and desorption behavior. Regardless of the nature of the surface, there were correlation between (i) the protein stability and kinetics of adsorption, with an increased amplitude of the first kinetic phase of adsorption with increasing stability; (ii) the protein stability and the extent of maximally adsorbed protein to the actual surface, with an increased amount of adsorbed protein with increasing stability; (iii) the protein stability and the amount of protein desorbed upon washing with buffer, with an increased elutability of the adsorbed protein with increased stability. All of the above correlations could be explained by the rate of denaturation and the conformational state of the adsorbed protein. In conclusion, protein engineering for increased stability can be used as a strategy to decrease irreversible adsorption on surfaces at a liquid-solid interface.  相似文献   

7.
Layer-by-layer assembly of glucose oxidase (GOx) with single-wall carbon nanotubes (SWCNTs) is achieved on the electrode surface based on the electrostatic attraction between positively charged GOx in pH 3.8 buffer and negatively charged carboxylic groups of CNTs. The cyclic voltammetry and electrochemical impedance spectroscopy are used to characterize the formation of multilayer films. In deaerated buffer solutions, the cyclic voltammetry of the multilayer films of {GOx/CNT}n shows two pairs of well-behaved redox peaks that are assigned to the redox reactions of CNTs and GOx, respectively, confirming the effective immobilization of GOx on CNTs using the layer-by-layer technique. The redox peak currents of GOx increase linearly with the increased number of layers indicating the uniform growth of GOx in multilayer films. The dependence of the cyclic voltammetric response of GOx in multilayer films on the scan rate and pH is also studied. A linear decrease of the reduction current of oxygen at the {GOx/CNT}-modified electrodes with the addition of glucose suggests that such multilayer films of GOx retain the bioactivity and can be used as reagentless glucose biosensors.  相似文献   

8.
This paper describes a novel approach to label-free electrochemical detection of human α-thrombin in human blood serum that utilizes ferrocene-coated gold nanoparticles (Fc-AuNPs). Human α-thrombin was specifically bound by the thiolated aptamers immobilized on the electrode. Positively charged Fc-AuNPs were electrostatically bound to the negatively charged aptamers. In principle, a high current peak should be observed in the absence of interactions between the aptamers and the human α-thrombin. This behavior indicates maximum adsorption of Fc-AuNPs by the negatively charged aptamers on the electrode surface. In contrast, when the thrombin-aptamer complex is formed, a low signal is expected because of the blocking capacities of the protein, which hinders the electrostatic binding of the Fc-AuNPs. The electrochemical signal, recorded by cyclic voltammetry and differential pulse voltammetry, indicates whether interactions between aptamers and proteins have occurred. There is a good correlation between the ferrocene oxidation peak intensity readings from our thrombin sensing system and the thrombin concentration, within the range of 1.2 μM-12 pM.  相似文献   

9.

Whole unstimulated saliva from two donors was investigated both with respect to adsorption characteristics and SDS‐induced elutability. Salivary protein adsorption onto hydroxyapatite (HA) discs was studied by means of in situ ellipsometry in the concentration range 0.1–20% saliva. The adsorbed amounts on HA were found to be similar to those on silica, but the rates of adsorption were lower. Protein adsorption was virtually unaffected by the presence of Na+, whereas Ca2+ induced nucleation of calcium phosphate at the surface, the deposition rate being influenced by the pellicle age but not by the presence of saliva in bulk solution. The SDS elutability of adsorbed pellicles was determined on HA as well as on silica surfaces. Desorption from both surfaces was found to occur in the same SDS concentration range, although a residual layer was observed on HA. The slight net positive charge and lower charge density of HA as compared to the strongly negatively charged silica, may, at least partly, account for this observation by causing a reduction in the repulsive force between protein‐surfactant complexes and the surface. Inter‐individual differences, observed in the adsorption as well as elution experiments, are thought to relate to the compositional differences observed by SDS‐PAGE.  相似文献   

10.
The lung surfactant proteins SP-B and SP-C are pivotal for fast and reversible lipid insertion at the air/liquid interface, a prerequisite for functional lung activity. We used a model system consisting of a preformed monolayer at the air/liquid interface supplemented with surfactant protein SP-B or SP-C and unilamellar vesicles injected into the subphase of a film balance. The content of SP-B or SP-C was similar to that found in lung lavage. In order to elucidate distinct steps of lipid insertion, we measured the time-dependent pressure increase as a function of the initial surface pressure, the temperature and the phosphatidylglycerol content by means of surface tension measurements and scanning force microscopy (SFM). The results of the film balance study are indicative of a two-step mechanism in which initial adsorption of vesicles to the protein-containing monolayer is followed by rupture and integration of lipid material. Furthermore, we found that vesicle adsorption on a preformed monolayer supplemented with SP-B or SP-C is strongly enhanced by negatively charged lipids as provided by DPPG and the presence of Ca2+ ions in the subphase. Hence, long-range electrostatic interactions are thought to play an important role in attracting vesicles to the surface, being the initial step in replenishment of lipid material. While insertion into the monolayer is independent of the type of protein SP-B or SP-C, initial adsorption is faster in the presence of SP-B than SP-C. We propose that the preferential interaction between SP-B and negatively charged DPPG leads to accumulation of negative charges in particular regions, causing strong adhesion between DPPG-containing vesicles and the monolayer mediated by Ca2+ ions, which eventually causes flattening and rupture of attached liposomes as observed by in situ SFM.  相似文献   

11.
In this paper, a novel amperometric glucose biosensor was constructed by alternative self-assembly of positively charged poly(diallydimethylammonium chloride) (PDDA) and negatively charged glucose oxidase (GOx) onto a 3D Nafion network via electrostatic adsorption. The amount of Nafion in the electrode and the number of the (PDDA/GOx)n multilayers were optimized to develop a sensitive and selective glucose biosensor. Under optimal conditions, the glucose biosensor with (PDDA/GOx)5 multilayers exhibited remarkable electrocatalytic activity, capable of detecting glucose with enhanced sensitivity of 9.55 μA/mM cm2 and a commendably low detection limit of 20 μM (S/N = 3). A linear response range of 0.05–7 mM (a linear correlation coefficient of 0.9984, n = 20) was achieved. In addition, the glucose biosensor demonstrated superior selectivity towards glucose over some interferents, such as ascorbic acid (AA) and uric acid (UA), at an optimized detection potential of 0.6 V versus Ag/AgCl reference.  相似文献   

12.
The rate of change of surface pressure, pi, in a Langmuir trough following the deposition of surfactant suspensions on subphases containing serum, with or without polymers, is used to model a likely cause of surfactant inactivation in vivo: inhibition of surfactant adsorption due to competitive adsorption of surface active serum proteins. Aqueous suspensions of native porcine surfactant, organic extracts of native surfactant, and the clinical surfactants Curosurf, Infasurf, and Survanta spread on buffered subphases increase the surface pressure, pi, to approximately 40 mN/m within 2 min. The variation with concentration, temperature, and mode of spreading confirmed Brewster angle microscopy observations that subphase to surface adsorption of surfactant is the dominant form of surfactant transport to the interface. However (with the exception of native porcine surfactant), similar rapid increases in pi did not occur when surfactants were applied to subphases containing serum. Components of serum are surface active and adsorb reversibly to the interface increasing pi up to a concentration-dependent saturation value, pi(max). When surfactants were applied to subphases containing serum, the increase in pi was significantly slowed or eliminated. Therefore, serum at the interface presents a barrier to surfactant adsorption. Addition of either hyaluronan (normally found in alveolar fluid) or polyethylene glycol to subphases containing serum reversed inhibition by restoring the rate of surfactant adsorption to that of the clean interface, thereby allowing surfactant to overcome the serum-induced barrier to adsorption.  相似文献   

13.
Alterations in the surface potential difference (delta U) of asolectin planar bilayer lipid membranes were measured following the adsorption of isolated matrix protein (M-protein) or neuraminidase of influenza virus. The method used was based upon measurement of the bilayer lipid membrane capacitance current second harmonic. The delta U dependence on the M-protein and neuraminidase concentration indicates different mechanisms of adsorption of these viral proteins by the lipid bilayer. The conductance (G0) dependence of the bilayer lipid membrane with different compositions on the concentration of isolated surface glycoproteins, hemagglutinin and neuraminidase, M-protein or neuraminidase was investigated. The change in G0 for M-protein was observed only after adsorption saturation had been achieved. Neuraminidase alone does not affect the membrane conductivity. The surface charge and lipid composition of the lipid bilayer influences the adsorption and incorporation of influenza virus M-protein and surface glycoproteins. The reversibility of protein incorporation into the bilayers was investigated by a perfusion technique. The results show reversibility of surface glycoprotein incorporation while M-protein binding appears to be irreversible.  相似文献   

14.
Prions can be disseminated in soils. Their interaction with soil minerals is a key factor for the assessment of risks associated with the transport of their infectivity. We did not examine here the infectivity itself but the adsorption kinetics of an ovine recombinant prion protein (ovine PrPrec), as a noninfectious model protein, on muscovite mica, a phyllosilicate with surface properties analogous to soil clays, in conditions of laminar flow through a channel. The protein was labeled with (125)I, and its adsorption examined between pH 4.0 and 9.0. At wall shear rate 100 s(-1), we found the process to be controlled mainly by transport at the beginning of the adsorption process. Additional experiments at 1000 s(-1) (pH 5 and 6) determined that the diffusion coefficient was in accordance with the hydrodynamic radius measured by size exclusion chromatography. The pseudo-plateau of the interfacial concentration with time was compatible with more than a monolayer and suggests the presence of aggregates. Desorption was not observed in the presence of buffer between pH 4 and 9 and sheep plasma, while the addition of alkaline detergent or 10(-1) M NaOH allowed an almost complete removal from the interface. The ensemble of results suggests that the largely irreversible adsorption of the ovine PrPrec onto mica is mainly due to electrostatic attraction between the protein and the highly negatively charged mica surface. Possible consequences for the mode of dissemination of prion proteins in soils are indicated.  相似文献   

15.
The adsorption free energy of charged proteins on mixed membranes, containing varying amounts of (oppositely) charged lipids, is calculated based on a mean-field free energy expression that accounts explicitly for the ability of the lipids to demix locally, and for lateral interactions between the adsorbed proteins. Minimization of this free energy functional yields the familiar nonlinear Poisson-Boltzmann equation and the boundary condition at the membrane surface that allows for lipid charge rearrangement. These two self-consistent equations are solved simultaneously. The proteins are modeled as uniformly charged spheres and the (bare) membrane as an ideal two-dimensional binary mixture of charged and neutral lipids. Substantial variations in the lipid charge density profiles are found when highly charged proteins adsorb on weakly charged membranes; the lipids, at a certain demixing entropy penalty, adjust their concentration in the vicinity of the adsorbed protein to achieve optimal charge matching. Lateral repulsive interactions between the adsorbed proteins affect the lipid modulation profile and, at high densities, result in substantial lowering of the binding energy. Adsorption isotherms demonstrating the importance of lipid mobility and protein-protein interactions are calculated using an adsorption equation with a coverage-dependent binding constant. Typically, at bulk-surface equilibrium (i.e., when the membrane surface is "saturated" by adsorbed proteins), the membrane charges are "overcompensated" by the protein charges, because only about half of the protein charges (those on the hemispheres facing the membrane) are involved in charge neutralization. Finally, it is argued that the formation of lipid-protein domains may be enhanced by electrostatic adsorption of proteins, but its origin (e.g., elastic deformations associated with lipid demixing) is not purely electrostatic.  相似文献   

16.
17.
The dynamics of protein adsorption at an oil/water interface are examined over time scales ranging from seconds to several hours. The pendant drop technique is used to determine the dynamic interfacial tension of several proteins at the heptane/aqueous buffer interface. The kinetics of adsorption of these proteins are interpreted from tension/log time plots, which often display three distinct regimes. (I) Diffusion and protein interfacial affinity determine the duration of an initial induction period of minimal tension reduction. A comparison of surface pressure profiles at the oil/water and air/water interface reveals the role of interfacial conformational changes in the early stages of adsorption. (II) Continued rearrangement defines the second regime, where the resulting number of interfacial contacts per protein molecule causes a steep tension decline. (III) The final regime occurs upon monolayer coverage, and is attributed to continued relaxation of the adsorbed layer and possible build-up of multilayers. Denaturation of proteins by urea in the bulk phase is shown to affect early regimes.  相似文献   

18.
The negatively charged bacterial polysaccharides—wall teichoic acids (WTAs) are synthesized intracellularly and exported by a two‐component transporter, TagGH, comprising a transmembrane subunit TagG and an ATPase subunit TagH. We determined the crystal structure of the C‐terminal domain of TagH (TagH‐C) to investigate its function. The structure shows an N‐terminal SH3‐like subdomain wrapped by a C‐terminal subdomain with an anti‐parallel β‐sheet and an outer shell of α‐helices. A stretch of positively charged surface across the subdomain interface is flanked by two negatively charged regions, suggesting a potential binding site for negatively charged polymers, such as WTAs or acidic peptide chains. Proteins 2016; 84:1328–1332. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
The interaction of the low molecular weight group of surfactant-associated proteins, SP 5-18, with the major phospholipids of pulmonary surfactant was studied by fluorescence measurements of liposomal permeability and fusion, morphological studies, and surface activity measurements. The ability of SP 5-18 to increase the permeability of large unilamellar lipid vesicles was enhanced by the presence of negatively charged phospholipid. The permeability of these vesicles increased as the protein concentration was raised and the pH was lowered. SP 5-18 also induced leakage from liposomes made both from a synthetic surfactant lipid mixture and from lipids separated from SP 5-18 during its purification from canine sources. When SP 5-18 was added to egg phosphatidylglycerol liposomes, the population of liposomes which became permeable leaked all encapsulated contents, while the remaining liposomes did not leak at all. The extent of leakage was higher in the presence of 3 mM calcium. SP 5-18 also induced lipid mixing between two populations of egg phosphatidylglycerol liposomes in the presence of 3 mM calcium, as monitored by resonance energy transfer between two different fluorescent lipid probes, N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine. Negative-staining electron microscopy showed that the addition of SP 5-18 and 3 mM calcium produced vesicles twice the size of control egg phosphatidylglycerol liposomes. In addition, surface balance measurements revealed that the adsorption of liposomal lipids to an air/water interface was enhanced by the presence of SP 5-18, negatively charged phospholipids, and 3 mM calcium. These observations suggest a similar lipid dependence for the interactions observed in the fluorescence and adsorption experiments.  相似文献   

20.
Lindl K  Kresse M  Müller RH 《Proteomics》2001,1(9):1059-1066
The evaluation of the plasma protein adsorption patterns of superparamagnetic iron oxide (SPIO) particles is of high interest concerning their in vivo fate and is carried out by two-dimensional electrophoresis (2-DE). The sample preparation is of great importance, especially the removal of the adsorbed proteins (desorption) from the particle surface for subsequent analysis by 2-DE. The removal is carried out by a desorption solution. In this study, negatively and positively charged SPIO model particles were under investigation concerning the desorption of proteins adsorbed on their surfaces. Firstly, the desorption process was determined quantitatively using the Bradford protein assay. Secondly, the removable or nonremovable protein species, from particles surface were under investigation by 2-DE. Looking at the desorption in a quantitative manner with the Bradford assay, the desorption efficacy from negatively charged particles was about 90%. In the case of the positively charged particles, the desorption efficacy seemed to be reduced, approximately 34% of the proteins remained on the surface. Comparing the protein patterns of the particles evaluated by 2-DE in the desorption solution and the proteins remaining on the particles, they confirmed the results from the protein quantification. After desorption, the IgG gamma-chains were found to be the dominant protein fraction remaining on the negatively charged particles. On the positively charged particles, many more protein species were found after desorption. The more basic the protein fragments, the more ineffective was the desorption from the positively charged model particle, and vice versa. Nevertheless, all protein spots were found qualitatively in the desorption solution, especially when the desorption solutions still containing the particles were used for the 2-DE analysis. In conclusion, 2-DE could be confirmed as the "gold standard" for determining the plasma protein adsorption patterns of nanoparticulate systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号