首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Physical damage and disease are known to lead to changes in the oxylipin signature of plants. We searched for oxylipins produced in response to both wounding and pathogenesis in Arabidopsis leaves. Linoleic acid 9- and 13-ketodienes (KODEs) were found to accumulate in wounded leaves as well as in leaves infected with the pathogen Pseudomonas syringae pv. tomato (Pst). Quantification of the compounds showed that they accumulated to higher levels during the hypersensitive response to Pst avrRpm1 than during infection with a Pst strain lacking an avirulence gene. KODEs are Michael addition acceptors, containing a chemically reactive alpha,beta-unsaturated carbonyl group. When infiltrated into leaves, KODEs were found to induce expression of the GST1 gene, but vital staining indicated that these compounds also damaged plant cells. Several molecules typical of lipid oxidation, including malonaldehyde, also contain the alpha,beta-unsaturated carbonyl reactivity feature, and, when delivered in a volatile form, powerfully induced the expression of GST1. The results draw attention to the potential physiological importance of naturally occurring Michael addition acceptors in plants. In particular, these compounds could act directly, or indirectly via cell damage, as powerful gene activators and might also contribute to host cell death.  相似文献   

2.
Xavier NM  Rauter AP 《Carbohydrate research》2008,343(10-11):1523-1539
The alpha,beta-unsaturated carbonyl function occurs in a wide variety of bioactive natural products. It is usually associated with the bioactivities of these compounds and acts as Michael acceptors for the addition of protein nucleophilic groups. The design and synthesis of sugars containing this functionality has provided a wide range of compounds, which can serve as building blocks of high synthetic versatility. This review deals with the chemistry of sugar-based molecules bearing singly linked or fused unsaturated lactones and ketones along with that of pyranoid enones and enonolactones. Examples are given of their syntheses and transformations into a variety of complex sugar derivatives such as branched-chain sugars, C-nucleosides, C-glycosyl derivatives, and various natural products, including selected analogues.  相似文献   

3.
Michael adducts of ascorbic acid with alpha,beta-unsaturated carbonyl compounds have been shown to be potent inhibitors of protein phosphatase 1 (PP1) without affecting cell viability at the respective concentrations. Here we were able to show that higher concentrations can partially inhibit PP2A activity and concomitantly induce apoptotic cell death. A nitrostyrene adduct of ascorbic acid proved to be a more potent and effective inhibitor of PP2A as well as a stronger inducer of apoptosis. These adducts only slightly lost their cytotoxic potential in multidrug resistant cells that were 10-fold less sensitive to apoptosis induction by okadaic acid and vinblastine.  相似文献   

4.
Induction of pumpkin (Cucurbita maxima Duch.) glutathione S-transferase (GST, EC 2.5.1.18) by aldehydes and related compounds was examined. All of the tested compounds induced pumpkin GST to different degrees, and it was found that (1) aldehydes induce GST directly and alcohols induce GST indirectly, and (2) alpha,beta-unsaturated aldehydes are the most effective inducers and their potency is related to the Michael acceptors reaction. The results of Western blot analysis showed that the patterns of induction of CmGSTU1, CmGSTU2 and CmGSTU3 were similar to the patterns of activity with the exception of alpha,beta-unsaturated carbonyl compounds. Among the three compounds, crotonaldehyde caused the highest activity induction (9.2-fold), but Western blot expression was the highest only for CmGSTU3. CmGSTF1 was almost non-responsive to all of the tested stresses. Results of induction studies suggested that efficient pumpkin GST inducers have distinctive chemical features. The in vitro activity of the enzyme was inhibited by ethacryanic acid, trans-2-hexenal, crotonaldehyde, and pentanal. Ethacryanic acid was found to be the most potent inhibitor with an apparent I(50) value of 6.90+/-2.06 micro M, while others were weak to moderate inhibitors. The results presented here indicate that plant GSTs might be involved in the detoxification of physiologically and environmentally hazardous aldehydes/alcohols.  相似文献   

5.
Ishiguro K  Ando T  Watanabe O  Goto H 《FEBS letters》2008,582(23-24):3531-3536
6-Shogaol and 6-gingerol are ginger components with similar chemical structures. However, while 6-shogaol damages microtubules, 6-gingerol does not. We have investigated the molecular mechanism of 6-shogaol-induced microtubule damage and found that the action of 6-shogaol results from the structure of alpha,beta-unsaturated carbonyl compounds. alpha,beta-Unsaturated carbonyl compounds such as 6-shogaol react with sulfhydryl groups of cysteine residues in tubulin, and impair tubulin polymerization. The reaction with sulfhydryl groups depends on the chain length of alpha,beta-unsaturated carbonyl compounds. In addition, alpha,beta-unsaturated carbonyl compounds are more reactive with sulfhydryl groups in tubulin than in 2-mercaptoethanol, dithiothreitol, glutathione and papain, a cysteine protease.  相似文献   

6.
Prostaglandins of the A series have been reported to inhibit tumor cell growth and induce tumor cell differentiation by a yet unknown mechanism. We propose that these effects are due to the presence of a reactive alpha, beta-unsaturated carbonyl group (delta 10,11) in the cyclopentane ring of the PGA molecule. PGA was effective whereas PGB (sterically hindered alpha, beta-unsaturated carbonyl at delta 8, 12) and PGA conjugated to glutathione were ineffective. 15-Epi-PGA2 was as effective as PGA2 suggesting that the S absolute configuration of the 15-hydroxyl group is not essential. There was no correlation between generation of cAMP and inhibition of cell proliferation or induction of differentiation by various prostaglandins. The data suggest that PGA's and PGA-like compounds inhibit tumor cell growth and induce differentation because of the chemical reactivity of the alpha, beta-unsaturated carbonyl rather than hormonal activity of the prostanoid nucleus.  相似文献   

7.
Reactivity of a number of nitroazole derivatives bearing an alpha,beta-unsaturated carbonyl group on the side chain toward non-protein thiols (NPSH) was examined both in the phosphate buffer solution and in the biological system. These alpha,beta-unsaturated compounds reacted with NPSH, such as glutathione (GSH) and L-cysteine (Cys), in the buffer solution to afford the 1,4-addition products. The reaction gave a second-order rate constant. The adducts of methyl 4-(2'-nitroimidazol-1'-yl)crotonate (1) with GSH and Cys were isolated and characterized as two diastereomers (7a,b and 8a,b) in ca. 1:1 ratio, respectively. Similarly, exposure of EMT6/KU cells to 1 at 1.0 mM for 1 h resulted in depletion of the intracellular NPSH by more than 80%. Over 50% of the depleted NPSH was attributed to the formation of the conjugated diastereomeric adducts. On the other hand, incubation of EMT6/KU cells with 1 at 1.0 mM under hypoxic conditions before X-ray irradiation caused concurrently a sharp reduction of the shoulder of the dose-survival curves (reduced the extrapolation number (n) from 8.0 to ca. 1.0) and an increase in the slope (decreased the mean lethal dose (Do) to ca. 50% of the control level). The observed effects of 1 on the dose-survival curves were due to the NPSH depletion through the Michael addition occurred in the cellular system. A fairly linear relationship was obtained between the n value and the reduced intracellular NPSH level. It indicated that the shoulder effect of the dose-survival curves of hypoxic cells should be the result of the NPSH depletion by the alpha,beta-unsaturated carbonyl group attached to the nitroazoles.  相似文献   

8.
CDDO, a semi-synthetic triterpenoid derived from oleanolic acid, has the potential to be used as a chemopreventive and chemotherapeutic agent. The structure of CDDO contains two alpha,beta-unsaturated carbonyl moieties, suggesting a mechanism of action involving a conjugate nucleophilic addition. Spectroscopic evaluation with thiol nucleophiles illustrates that an addition does indeed occur, but this addition is selective and reversible.  相似文献   

9.
Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but particularly affected gene expression, metabolism, and cellular signaling. Surprisingly, the screen did not identify any antioxidants or similar stress-protective molecules, indicating that acrolein toxicity may not be mediated via reactive oxygen species. Most strikingly, a mutant lacking an old yellow enzyme (OYE2) was identified as being acrolein sensitive. Old yellow enzymes are known to reduce alpha,beta-unsaturated carbonyl compounds in vitro, but their physiological roles have remained uncertain. We show that mutants lacking OYE2, but not OYE3, are sensitive to acrolein, and overexpression of both isoenzymes increases acrolein tolerance. Our data indicate that OYE2 is required for basal levels of tolerance, whereas OYE3 expression is particularly induced following acrolein stress. Despite the range of alpha,beta-unsaturated carbonyl compounds that have been identified as substrates of old yellow enzymes in vitro, we show that old yellow enzymes specifically mediate resistance to small alpha,beta-unsaturated carbonyl compounds, such as acrolein, in vivo.  相似文献   

10.
11.
P1-zeta-crystallin (P1-ZCr) is an oxidative stress-induced NADPH:quinone oxidoreductase in Arabidopsis thaliana, but its physiological electron acceptors have not been identified. We found that recombinant P1-ZCr catalyzed the reduction of 2-alkenals of carbon chain C(3)-C(9) with NADPH. Among these 2-alkenals, the highest specificity was observed for 4-hydroxy-(2E)-nonenal (HNE), one of the major toxic products generated from lipid peroxides. (3Z)-Hexenal and aldehydes without alpha,beta-unsaturated bonds did not serve as electron acceptors. In the 2-alkenal molecules, P1-ZCr catalyzed the hydrogenation of alpha,beta-unsaturated bonds, but not the reduction of the aldehyde moiety, to produce saturated aldehydes, as determined by gas chromatography/mass spectrometry. We propose the enzyme name NADPH:2-alkenal alpha,beta-hydrogenase (ALH). A major portion of the NADPH-dependent HNE-reducing activity in A. thaliana leaves was inhibited by the specific antiserum against P1-ZCr, indicating that the endogenous P1-ZCr protein has ALH activity. Because expression of the P1-ZCr gene in A. thaliana is induced by oxidative stress treatments, we conclude that P1-ZCr functions as a defense against oxidative stress by scavenging the highly toxic, lipid peroxide-derived alpha,beta-unsaturated aldehydes.  相似文献   

12.
We have recently shown that actin can be modified by the Michael addition of 4-hydroxynonenal to Cys374. Here, we have exposed purified actin at increasing acrolein concentrations and have identified the sites of acrolein addition using LC-ESI-MS/MS. Acrolein reacted with Cys374, His87, His173, and, minimally, His40. Cys374 adduction by both 4-hydroxynonenal and acrolein negligibly affected the polymerization of aldehyde-modified (carbonylated) actin, as shown by fluorescence measurements. Differently, acrolein binding at histidine residues, when Cys374 was completely saturated, inhibited polymerization in a dose-dependent manner. Molecular modeling analyses indicated that structural distortions of the ATP-binding site, induced by four acrolein-Michael adducts, could explain the changes in the polymerization process. Aldehyde binding to Cys374 does not alter significantly actin polymerization because this residue is located in a very flexible region, whose covalent modifications do not alter the protein folding. These data demonstrate that Cys374 represents the primary target site of alpha,beta-unsaturated aldehyde addition to actin in vitro. As Cys374 is a preferential target for various oxidative/nitrosative modifications, and actin is one of the main carbonylated proteins in vivo, these findings also suggest that the highly reactive Cys374 could serve as a carbonyl scavenger of reactive alpha,beta-unsaturated aldehydes and other electrophilic lipids.  相似文献   

13.
A series of steroidal and nonsteroidal Michael acceptors that represent reaction products for 3 alpha-hydroxysteroid dehydrogenase were synthesized and evaluated as potential enzyme-generated inactivators. Introduction of exocyclic olefins either at C-2 or C-6 produced inhibitors with high affinity for the enzyme (0.05 to 5.0 microM). However, despite this affinity, none of these compounds produced time-dependent inactivation of the enzyme. By contrast, analogs based on 1-phenyl-2-propen-1-one were stoichiometric inactivators of the enzyme and ease of turnover of the parent latent Michael acceptor depended on the presence of an electron-withdrawing substituent at the para position. A series of steroidal and nonsteroidal epoxides in which the oxiranyl oxygen could be substituted for the 3-ketone (the acceptor carbonyl of a steroid substrate) were also synthesized and evaluated as potential mechanism-based inactivators. Steroidal 2 alpha,3 alpha-, and 3 alpha,4 alpha-epoxides as well as 3 alpha- and 3 beta-spiroepoxides did not bind to the enzyme and were unable to cause enzyme inactivation in either the presence or absence of pyridine nucleotide. In contrast, nitrostyrene oxides produced time-dependent inactivation, the rate of which was governed by the presence of an electron withdrawing group at the para position. These data indicate that the design of mechanism-based inactivators for 3 alpha-hydroxysteroid dehydrogenase requires the incorporation of electron-withdrawing groups adjacent to the latent enzyme-activated group and, as a result, the turnover and/or reactivity of these compounds is increased. Moreover, these compounds can be modeled on nonsteroids.  相似文献   

14.
The aim of this study was to understand the mechanism of action through which carnosine (beta-alanyl-L-histidine) acts as a quencher of cytotoxic alpha,beta-unsaturated aldehydes, using 4-hydroxy-trans-2,3-nonenal (HNE) as a model aldehyde. In phosphate buffer solution (pH 7.4), carnosine was 10 times more active as an HNE quencher than L-histidine and N-acetyl-carnosine while beta-alanine was totally inactive; this indicates that the two constitutive amino acids act synergistically when incorporated as a dipeptide and that the beta-alanyl residue catalyzes the addition reaction of the histidine moiety to HNE. Two reaction products of carnosine were identified, in a pH-dependent equilibrium: (a) the Michael adduct, stabilized as a 5-member cyclic hemi-acetal and (b) an imine macrocyclic derivative. The adduction chemistry of carnosine to HNE thus appears to start with the formation of a reversible alpha,beta-unsaturated imine, followed by ring closure through an intra-molecular Michael addition. The biological role of carnosine as a quencher of alpha,beta-unsaturated aldehydes was verified by detecting carnosine-HNE reaction adducts in oxidized rat skeletal muscle homogenate.  相似文献   

15.
Porter RB  Gallimore WA  Reese PB 《Steroids》1999,64(11):770-779
The fungi Exophiala jeanselmei var. lecanii-corni [IMI (International Mycological Institute) 312989, UAMH (University of Alberta Microfungus Collection and Herbarium) 8783] and Ceratocystis paradoxa (IMI 374529, UAMH 8784) have been examined for their potential in steroid biotransformation. The study has determined that E. jeanselmei var. lecanii-corni effected overall anti-Markovnikov hydration on dehydroisoandrosterone, and side-chain degradation on a variety of pregnanes. Both ascomycetes were found to carry out redox reactions of alcohols and ketones as well as 1,4 reduction of alpha,beta-unsaturated carbonyl systems.  相似文献   

16.
The ventroabdominal flexor muscles of the crustacean Atya lanipes, which are normally completely inexcitable, generate trains of overshooting calcium action potentials after exposure to the sulfhydryl reagents known as alpha, beta-unsaturated carbonyl compounds. The chemically induced action potentials are abolished by protein reagents specific for guanidino and amino groups. Attempts to induce excitability by the use of agents that block potassium conductance were without success. It is proposed that calcium channels are made functional by the covalent modification of a calcium protochannel, via the interaction between the introduced carbonyl group and existing arginine residues.  相似文献   

17.
alpha,beta-Unsaturated ketones are bifunctional compounds which form promutagenic 1,N(2)-propanodeoxyguanosine adducts like carcinogenic alpha,beta-unsaturated aldehydes and are mutagenic and genotoxic like these aldehydes. They are important industrial chemicals, are found in our environment and are widespread in our food. We investigated the SOS repair inducing activities of five ketones in the SOS chromotest and compared these results with that of the Ames test. Alkyl substitution at the beta-position of the alpha, beta-unsaturated carbonyl moiety leads to a decrease or loss in genotoxicity. Genotoxicity is higher if using ethanol as solvent instead of dimethylsulfoxide (DMSO). An increasing effect is also observed with methanol and n-propanol. Addition of the alcohol dehydrogenase inhibitor 4-methylpyrazole does not significantly influence the genotoxicity indicating that it is unlikely that the solvent effect depends on competitive inhibition of alcohol dehydrogenase by the alcohols used as solvents. Since other possible explanations e.g. ketal formation or solubility effects are also unlikely, the mechanism of this solvent effect observed with three different E. coli PQ-strains remains unresolved. No significant difference in genotoxicity of ethyl vinyl ketone was found between the strains PQ 37 and PQ 243 indicating that base excision repair does not play a role in the repair of 1,N(2)-propanodeoxyguanosine adducts, the main adducts of the alpha,beta-unsaturated ketones.  相似文献   

18.
Allyl alcohol hepatotoxicity is mediated by an alcohol dehydrogenase-derived biotranformation product, acrolein. This highly reactive alpha,beta-unsaturated aldehyde readily alkylates model proteins in vitro, forming, among other products, Michael addition adducts that possess a free carbonyl group. Whether such damage accompanies acrolein-mediated toxicity in cells is unknown. In this work we established that allyl alcohol toxicity in mouse hepatocytes involves extensive carbonylation of a wide range of proteins, and that the severity of such damage to a subset of 18-50 kDa proteins closely correlated with the degree of cell death. In addition to abolishing cytotoxicity and glutathione depletion, the alcohol dehydrogenase inhibitor 4-methyl pyrazole strongly attenuated protein carbonylation. Conversely, cyanamide, an aldehyde dehydrogenase inhibitor, enhanced cytotoxicity and protein carbonylation. Since protein carbonylation clearly preceded the loss of membrane integrity, it may be associated with the toxic process leading to cell death.  相似文献   

19.
Tanaka T  Kawase M  Tani S 《Life sciences》2003,73(23):2985-2990
A variety of alpha,beta-unsaturated ketones were evaluated for their effect on the jack bean urease. Of 35 compounds tested, 2-cyclohepten-1-one (1), 2-cyclohexen-1-one (2), 2-cyclopenten-1-one (3), and 5,6-dihydro-2H-pyran-2-one (4) showed potent inhibitory activities against the enzyme. The most potent compound (1) (IC50=0.16 mM) showed similar inhibitory potency to hydroxyurea (IC50=0.095 mM). The inhibitory effects of 1, 2, 3, and 4 were significantly reduced by 2-mercaptoethanol or dithiothreitol. These data suggest that alpha,beta-unsaturated ketones inhibited the urease activity, possibly by a Michael-like addition of a protein SH group to the double bond of the alpha,beta-unsaturated carbonyl group.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号