首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang YH  Augspurger C 《Oecologia》2006,147(3):533-545
Certain overlying strata in forests may disproportionately reduce seedling density and species richness. For eight arborescent palm species, we quantified the relative restriction of seedling recruitment under individual palms versus non-palm sites and extended to the landscape scale by quantifying the total area covered by arborescent palms at Barro Colorado Island (BCI), Panama and La Selva Biological Station, Costa Rica. We also examined whether differences among palm species in restricting seedling recruitment were associated with differences in crown architecture, litter depth, and light availability. Woody seedlings had lower mean density/m2 and mean number of species/m2 under individual palms than at non-palm sites for all four palm species at BCI, but for none at La Selva. Estimated species richness for woody seedlings, derived via rarefaction, was lower under palm than non-palm microsites at both BCI and La Selva, but not for non-woody seedlings. Differences in seedling density corresponded to some key architectural characters that differed among the palm species. Light availability was lower under palm than non-palm microsites at both BCI and La Selva, but only estimated species richness of woody seedlings at BCI was strongly correlated with % canopy openness. The coverage of arborescent palms was much lower at BCI than La Selva. Therefore, at BCI, the relative restriction of woody seedling recruitment under individual palms does not accumulate greatly at the landscape scale. At La Selva, for woody seedlings, only estimated species richness was relatively limited under palms, and non-woody seedlings had relatively lower mean density/m2 and mean number of species/m2 under only one palm species. Therefore, the relative restriction of seedling recruitment by arborescent palms at La Selva is limited at both individual and landscape scales.  相似文献   

2.
Seedling emergence and establishment are fragile processes that determine the direction and structure of forest succession and regeneration. However, seedling emergence and establishment are easily affected by biotic and abiotic (environmental) factors. A dense and expanding understory of dwarf bamboo is one such important factor that can seriously hinder the seedling regeneration. We conducted a field experiment to investigate the emergence and establishment of canopy tree seedlings under artificially controlled densities of dwarf bamboo. We found that understory dwarf bamboo obstructed seedling emergence but reduced the death of seedlings. Although understory dwarf bamboo reduced the median retention time of seedlings, dense bamboo increased the mean survival time of seedlings. Our results suggest that understory dwarf bamboo has multiple selectivities for tree seedling emergence and establishment: high‐density dwarf bamboo was beneficial to evergreen species but lower‐density of bamboo was conducive to the survival of deciduous species, it means the dwarf bamboo potentially alters successional trajectories of forest communities. Path analysis revealed that the most important factors affecting tree seedling emergence and death were the abundance of seeds in the seed bank and the density of emerged seedlings, and that the soil temperature promoted seedling emergence but increased seedling death, the thickness of litter limited seedling emergence, and the leaf area index of the bamboo canopy limited seedling death. The present study suggests that dwarf bamboo can directly alter the microenvironment, significantly reducing light levels and soil temperature but increasing the thickness of litter and soil humus, thereby indirectly impacting the regeneration of tree seedlings. Our results indicate that various factors affected seedling emergence, and there were complex indirect relationships among these factors. In general, biological factors had a stronger influence on tree seedling regeneration than environmental factors.  相似文献   

3.
Evidence from tropical forests suggests understory habitats are associated with a high risk of disease, which may prevent the establishment of vulnerable tree species; in contrast, canopy gaps can act as refuges from these pathogens. However, few studies have investigated the impacts of pathogens on regeneration in temperate forests. To determine whether losses to fungi of seeds of Betula papyrifera, a light-loving species, varied between habitats that differed in their degree of openness, we applied fungicide to seeds buried in old fields, treefall gaps, and forest understory sites. We found that the application of fungicide significantly reduced losses in all habitats, relative to control values. This effect was habitat-dependent: the benefit of fungicide was greater in forest understory than in openings. This suggests that B. papyrifera is prevented from establishing in understory environments in part by its susceptibility to pathogen attack, and not solely because of a high light requirement.  相似文献   

4.
Canopy trees are largely responsible for the environmental heterogeneity in the understory of tropical and subtropical species‐rich forests, which in turn may influence sapling community dynamics. We tested the effect of the specific identity of four cloud forest canopy trees on total solar radiation, canopy openness, soil moisture, litter depth, and soil temperature, as well as on the structure and dynamics of the sapling community growing beneath their canopies. We observed significant effects of the specific identity of canopy trees on most understory microenvironmental variables. Soil moisture was higher and canopy openness lower beneath Cornus disciflora. In turn, canopy openness and total solar radiation were higher beneath Oreopanax xalapensis, while the lowest soil moisture occurred beneath Quercus laurina. Moreover, Chiranthodendron pentadactylon was the only species having a positive effect on litter depth under its canopy. In spite of these between‐species environmental differences, only C. pentadactylon had significant, negative effects on sapling density and species richness, which may be associated to low seed germination and seedling establishment due to an increased litter depth in its vicinity. The relevance of the specific identity of canopy trees for natural regeneration processes and species richness maintenance depends on its potential to differentially affect sapling dynamics through species‐specific modifications of microenvironmental conditions.  相似文献   

5.
Beckage B  Clark JS 《Oecologia》2005,143(3):458-469
Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.  相似文献   

6.
Negative density dependence contributes to seedling dynamics in forested ecosystems, but the relative importance of this factor for different woody plant life‐forms is not well‐understood. We used 1 yr of seedling survivorship data for woody seedlings in 17 different plots of lower to mid‐montane rain forests on the island of Dominica to examine how seedling height, abiotic factors, and biotic factors such as negative density dependence are related to seedling survival of five different life‐forms (canopy, midstory, and understory trees; shrubs; and lianas). Across 64 species, taller seedlings in seedling plots with higher canopy openness, greater seedling density, lower relative abundance of conspecific seedlings, and lower relative abundance of conspecific adults generally had a greater probability of surviving. Height was the strongest predictor of seedling survival for all life‐forms except lianas. Greater seedling density was positively related to survival for canopy and midstory trees but negatively related to survival for the other life‐forms. For trees, the relative abundance of conspecific seedling and adult neighbors had weak and strong negative effects on survival respectively. Neither shrub nor liana seedling survival was affected by the relative abundance of conspecific neighbors. Thus, negative density dependence is confirmed as an important structuring mechanism for tree seedling communities but does not seem to be important for lianas and shrubs in Dominican rain forests. These results represent the first direct assessment of controls on seedling survival of all woody life‐forms – an important step in understanding the dynamics and structure of the entire woody plant community.  相似文献   

7.
The vertical stratification of lepidopteran and coleopteran communities in a cool-temperate deciduous forest in Japan was examined to evaluate the hypothesis of an expected uniform distribution of mobile flying insects between the canopy and understory of temperate forests. Lepidopteran and coleopteran insects were trapped using light traps at three sites in each of the canopy and understory for three consecutive nights each month from April to October 2001. For Lepidoptera, species richness, abundance, and family richness were significantly higher in the understory than in the canopy. For Coleoptera, only abundance was larger in the canopy relative to the understory; species and family richness did not differ between the strata. The beta diversity of the lepidopteran community was larger between the strata than among sites, but the coleopteran community showed an inverse pattern. These results imply the presence of vertical stratification within the lepidopteran community, but not within the coleopteran community, in the temperate forest. The understory contributes more than the canopy to lepidopteran diversity in the temperate forest, although this stratification may be relatively weak because, in contrast to the situation in tropical forests, the canopy and understory assemblages share many species.  相似文献   

8.
Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.  相似文献   

9.
Patterns in substrate, canopy openness, tree species composition and structure were studied in a swamp forest in southeastern Brazil (Itirapina, SP), using a fine spatial scale (∼0.05 km2). Sixty quadrats of 10 m × 10 m were divided into three sample plots, located in the centre and at both ends of the forest remnant (upstream and downstream), encompassing different environmental conditions. In each quadrat we quantified and identified individuals with CBH (circumference at breast height) ≥ 10 cm, the chemical properties of the soil, the drainage (flooded area) and the percentage of canopy openness. We keep 5124 individuals distributed over 37 species and 25 families. The downstream site presented a lower frequency of flooding, canopy openness, species richness (15 species) and density of individuals. In the central site we found different patterns of drainage and light incidence, the greatest species richness (31 species) and density of individuals, but smaller trees both in height and in diameter. The upstream site was subject to higher frequency of flooding, with intermediate values for density and species richness (27 species). Floristic and structural variation between and within sites reflects the different environmental conditions related to substrate and canopy openness. However, a larger number of species were correlated with drainage pattern (21 species) rather than with canopy openness (14 species), suggesting that the main factor responsible for the spatial organization of the plant community in swamp forests is soil drainage.  相似文献   

10.
Pappas  Gregory S.  Tinker  Daniel B.  Rocca  Monique E. 《Plant Ecology》2020,221(12):1293-1308

Understory plants are an important element of forests, having a considerable influence on ecosystem functioning and canopy-tree development following disturbance. Recent bark beetle outbreaks across western North American forests have caused extensive canopy mortality, creating new growing conditions that provide the opportunity for changes within the intact understory. Over a five-year period following peak mountain pine beetle (MPB) activity across lodgepole pine-dominated forests in Rocky Mountain National Park, Colorado, we measured the changes in plant diversity, cover, and dominance by lifeform and quantified tree regeneration rates. Average species richness and diversity increased, but overall plant cover did not change. Graminoids appeared to benefit the most, increasing in average cover, richness, and relative dominance. The rise in graminoid dominance was largely at the expense of shrubs, which showed little ability to benefit from overstory mortality within the first years following attack. Most plant responses were positively related to the total tree basal area lost since the peak of the outbreak, suggesting that increased resource availability following tree death may benefit understory plants. However, a negative relationship between several understory variables and tree sapling density provides evidence that understory plants compete with saplings for the newly available resources. Tree seedling density nearly doubled over the duration of the study, indicating a strong regeneration pulse. Among species, lodgepole pine displayed the greatest tree seedling establishment. This is one of the first studies to use repeated measurements to describe this often-overlooked component of forest change associated with MPB disturbance.

  相似文献   

11.
林分光照空间异质性对水曲柳更新的影响   总被引:16,自引:0,他引:16       下载免费PDF全文
 光照是森林更新动态中极为关键的环境因子。本研究在东北天然次生林中选择样地,应用地统计学理论结合实验生态学方法,定量分析林分光照空间异质性特征,同时进行林下播种水曲柳(Fraxinus mandshurica)的更新实验,探测更新格局特征。通过空间关联性分析,研究探讨是否林分光照的空间变异对水曲柳更新有重要影响作用。研究结果表明: 1)生长季林分平均光照仅为全光照的4.2%~4.6%,在空间分布上呈现非常明显的异质性特征,空间自相关变异(62.5%~78.2%)主要体现在10.9~12.4 m的尺度上。2)林分光照不同的空间样点上,水曲柳更新幼苗发生数量和秋季幼苗存活数量均存在显著差异,光照相对强的微生境中,更新苗发生数量较多且存活率高,而在光照较弱的微生境中则更新较差,更新具有十分明显的空间格局。3)更新格局与林分光照空间异质性特征紧密关联。在光照空间异质性程度较高、空间变异较复杂的条件下,更新相应呈现出较复杂的空间格局,自相关的变异表现在较小尺度范围(2.12~6.97 m)。在光照空间异质性程度较低、空间变异复杂性较小的条件下,更新格局的复杂程度明显变小,空间自相关变异(>83%)表现在较大的尺度上(30 m),对更新格局起主要的影响作用,随机变异的影响很小(<17%)。这些研究结果说明,林分光照环境在水曲柳更新中的作用十分关键,林分光照的空间异质性对更新格局起决定性作用。  相似文献   

12.
This study tested three hypotheses regarding how plants respond to the spatial heterogeneity in light availability in the rain forest understory: (1) understory plants occur preferentially in the lighter parts of the understory; (2) under–story palms are more shade tolerant than other understory plants; (3) rain forest plants differ in their ontogenetic response to understory light conditions. The study was carried out in old–growth rain forest in the Yasuní National Park, Amazonian Ecuador. The hypotheses were tested by comparing the distributions of 20 plant species (1454 individuals) over microsites with differing degrees of exposure to canopy gaps to the background distribution of these microsites in the forest. The gap exposure of a given microsite was described by an index based on the number and size of gaps in the canopy to which the site was exposed. Two plant height classes were studied: 0.80–2.49 and 2.50–5 m. The first and third hypotheses were accepted, while the second hypothesis was rejected. The results for the individual species corresponded well with what is known from earlier studies about the ecology of these species or close relatives, suggesting that the patterns observed can be generalized for Neotropical rain forests. Notably, the most abundant species in the study represent several different life history strategies. Thus, abundance in the rain forest understory can be achieved by several different strategies. This suggests that niche differentiation in terms of response to small changes in understory light conditions may be an important factor in the maintenance of the high local plant species richness of tropical rain forests.  相似文献   

13.
Species richness, abundance and diversity patterns in palm communities in the Yucatan Peninsula were compared at three sites with different forest types (semi‐deciduous, semi‐evergreen and evergreen), as well as different precipitation, geomorphology and soil depth. All individual palms, including seedlings, juveniles and adults, were identified and counted in forty‐five (0.25 ha) transects. A total of 46 000 individual palms belonging to 11 species from nine genera and two subfamilies were recorded. Palm richness, diversity and abundance were highest in the evergreen forest. Species from the subfamily Coryphoideae dominated the semi‐deciduous and semi‐evergreen forests while species from the subfamily Arecoideae dominated the evergreen forest. Seven species were found only in the evergreen forest. Chamaedorea seifrizii and Sabal yapa were found in all three forest types, while Thrinax radiata was found in the semi‐deciduous and semi‐ evergreen forests and Cocothrinax readii only in the semi‐evergreen forest. Compared to other neotropical palm communities, the richness and diversity in the Yucatan Peninsula are lower than in the western Amazon basin. Although palm richness and diversity on the Yucatan Peninsula were positively associated with precipitation, other variables, in particular soil depth and fertility as well as habitat heterogeneity (microtopography and canopy cover), need to be considered to better understand the observed patterns.  相似文献   

14.
Sierra Nevada forests have high understory species richness yet we do not know which site factors influence herb and shrub distribution or abundance. We examined the understory of an old-growth mixed-conifer Sierran forest and its distribution in relation to microsite conditions. The forest has high species richness (98 species sampled), most of which are herbs with sparse cover and relatively equal abundance. Shrub cover is highly concentrated in discrete patches. Using overstory tree cover and microsite environmental conditions, four habitats were identified; tree cluster, partial canopy, gap, and rock/shallow soil. Herb and shrub species were strongly linked with habitats. Soil moisture, litter depth and diffuse light were the most significant environmental gradients influencing understory plant distribution. Herb cover was most strongly influenced by soil moisture. Shrub cover is associated with more diffuse light, less direct light, and sites with lower soil moisture. Herb richness is most affected by conditions which influence soil moisture. Richness is positively correlated with litter depth, and negatively correlated with direct light and shrub cover. Disturbance or management practices which change forest floor conditions, shallow soil moisture and direct light are likely to have the strongest effect on Sierran understory abundance and richness.  相似文献   

15.
In this study, we examined the impacts of Attalea oleifera on the structure of seedling bank and discuss potential mechanisms of palm influence. Seed rain, seedling bank, and palm leaf fall were assessed beneath the canopy and in the vicinity of 16 adult palms across the edges of a large fragment (3500 ha) of the Atlantic forest. Moreover, we examined A. oleifera impacts on seed germination and seedling mortality by experimentally submitting seeds and seedlings to prolonged palm-leaf covering. As expected, seedling bank beneath the adults exhibited reduced abundance and species richness at local and habitat scale. Small to large seeds (3.1–30 mm) were underrepresented in the seed rain below adults palms, while experimental leaf covering drastically reduced both seed germination and seedling survivorship. A. oleifera leaf fall occurred over the whole year (3.6±2.7 leaves/individual/yr), which resulted in deep leaf litter mounds (10.7±9.2 cm). Finally, adult palm density (21.6±11.9 individuals/ha) correlated negatively with seedling density across Attalea clusters. Our results suggest that A. oleifera exerts negative effects on the seedling bank by reducing seedling abundance and richness as a consequence of two complementary mechanisms: impoverished and size-biased seed rain plus reduced seed germination and increased seedling mortality due to prolonged covering by fallen leaves.  相似文献   

16.
Silvicultural practices are traditionally aimed at increasing forest profits; however, recent approaches to forest conservation have broadened to include nature-based silviculture for regenerating forests. In southern Ontario (Canada), originally dominated by deciduous forests, conifer plantations were established on abandoned agricultural sites. Currently, there is an increasing interest to convert these conifer stands to a state that mimics the original deciduous forest. We investigated arthropod abundance, species richness of carabid beetles, and abundance of arthropod assemblages (trophic and prey groups) under five silvicultural treatments conducted to regenerate deciduous forests (the natural forest type) from the old conifer plantations. The treatments included: (1) uniform canopy removal; (2) uniform canopy removal and understory removal; (3) group canopy removal; (4) group canopy removal and understory removal; and (5) untreated control plots (relatively pure red pine). Insects were sampled annually using sweepnets and pitfall traps. Results revealed treatment effects on the abundance of Coleoptera, Heteroptera, herbivores, and small arthropods (<3 mm) caught in sweepnet samples, where plots subjected to group shelterwood removal and understory removal supported higher abundances than the control plots. There was no treatment effect on the abundance of other arthropod groups or on the species richness and abundance of carabid beetles. The silvicultural treatments used to encourage natural regeneration did not seem to affect arthropod food availability for insectivorous vertebrates. Thus, the type of silvicultural strategy used to convert pine plantations to a stage that mimics the natural deciduous forests had little overall impact on arthropods.  相似文献   

17.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

18.
The planting of non‐timber forest products (NTFPs) in the understory of tropical forests is promoted in many regions as a strategy to conserve forested lands and meet the economic needs of rural communities. While the forest canopy is left intact in most understory plantations, much of the midstory and understory vegetation is removed in order to increase light availability for cultivated species. We assessed the extent to which the removal of vegetation in understory plantations of Chamaedorea hooperiana Hodel (Arecaceae) alters understory light conditions. We also examined how any changes in light availability may be reflected by changes in the composition of canopy tree seedlings regenerating in understory plantations. We employed a blocked design consisting of four C. hooperiana plantation sites; each site was paired with an adjacent, unmanaged forest site. Hemispherical canopy photographs were taken and canopy tree seedlings were identified and measured within 12 3 × 2 m randomly placed plots in each site for a total of 96 plots (4 blocks × 2 sites × 12 plots). Plantation management did not affect canopy openness or direct light availability but understory plantations had a higher frequency of plots with greater total and diffuse light availability than unmanaged forest. Comparisons of canopy tree seedling composition between understory plantations and unmanaged forest sites were less conclusive but suggest that management practices have the potential to increase the proportion of shade‐intolerant species of tree seedlings establishing in plantations. Given the importance of advanced regeneration in gap‐phase forest dynamics, these changes may have implications for future patterns of succession in the areas of forest where NTFPs are cultivated.  相似文献   

19.
Conversion of natural habitats to oil palm agriculture has caused declines in biodiversity and changes in ecosystem functions. To preserve biodiversity we must protect natural habitats, but once oil palm plantations are established, developing more-environmentally friendly management strategies could support higher levels of within-plantation biodiversity and boost the delivery of ecosystem services, possibly increasing oil palm productivity. In this study, we use a before-after control-impact (BACI) experiment to test whether three understory vegetation management strategies affect spider abundance, species richness, and species-level community composition in canopy and ground microhabitats in mature oil palm plantations. Our treatments encompassed the range of current management practices and included heavy applications of herbicides to eliminate all understory vegetation, maintaining some understory vegetation using business-as-usual herbicide applications, and enhancing understory vegetation by not applying any herbicides. We focussed on spiders, as they are both biologically and economically important in oil palm plantations, owing to their important pest control services. We identified more than 1000 spiders, representing 20 families and 83 morphospecies. The treatments did not affect any aspects of spider biodiversity, although the abundance and species richness of canopy-dwelling spiders changed between pre- and post-treatment sample periods, independent of treatment. Our findings indicate that differences in understory vegetation management practices do not affect spiders, or the pest management services that they provide, in mature oil palm plantations. As such, more extreme changes in management would probably be required to enhance spider biodiversity in oil palm plantations in the long-term. Further studies are needed to determine the practicalities of such approaches, to assess how changes in vegetation management practices affect spiders in additional microhabitats, and how the impacts of such approaches vary across the 20–30 year oil palm commercial life cycle.  相似文献   

20.
Gavin  Daniel G.  Peart  David R. 《Plant Ecology》1997,131(2):223-231
We examined the spatial structure and regeneration of Tetramerista glabra, a dominant canopy tree in peat swamp rain forest in Borneo (West Kalimantan, Indonesia). T. glabra has strong spatial structure that changes dramatically during the life cycle; seedlings were highly aggregated, saplings were random and trees were evenly distributed. Germination and seedling relative growth were highest within canopy gaps, but seedling densities were highest at gap edges. Concentration of seedlings in gap edges, rather than localized seed dispersal, was responsible for seedling patchiness. The slope of the relationship between relative growth rate and seedling height decreased from gap, to gap edge to understory habitats, suggesting that competition within the seedling layer is more important in gaps than in the understory. The processes that break down seedling aggregation, leading to over-dispersion of trees, must be density dependent, but remain unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号