首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enterokinase (EC 3.4.21.9) is a serine proteinase in the duodenum that exhibits specificity for the sequence (Asp)(4)-Lys. It converts trypsinogen to trypsin. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for in vitro cleavage of fusion proteins. cDNA encoding the catalytic chain of Chinese bovine enterokinase was cloned and its encoding amino acid sequence is identical to the previously reported sequence although there are two one-base mutations which do not change the encoded amino acid. The EK catalytic subunit cDNA was cloned into plasmid pET32a, and fused downstream to the fusion partner thioredoxin (Trx) and the following DDDDK enterokinase recognition sequence. The recombinant bovine enterokinase catalytic subunit was expressed in Escherichia coli BL21(DE3), and most products existed in soluble form. After an in vivo autocatalytic cleavage of the recombinant Trx-EK catalytic domain fusion protein, intact, biologically active EK catalytic subunit was released from the fusion protein. The recombinant intact EK catalytic subunit was purified to homogeneity with a specific activity of 720 AUs/mg protein through ammonium sulfate precipitation, DEAE chromatography, and gel filtration. The purified intact EK catalytic subunit has a K(m) of 0.17 mM, and K(cat) is 20.8s(-1). From 100 ml flask culture, 4.3 mg pure active EK catalytic subunits were obtained.  相似文献   

2.
克隆了近平滑假丝酵母(Candida parapsilosis)(R)-羰基还原酶基因rcr,构建胞外表达工程茵Escherichia coli BL21(DE3)/pET20b-rcr,实现了(R)-羰基还原酶在大肠杆菌中高效外泌表达,周质空间和发酵液酶的比活力分别达0.68 U/mg和0.26 U/mg,与大肠杆菌的胞内体系重组酶相比,酶的比活力提高了近两倍。为了更好地促进该重组酶的外分泌于大肠杆菌细胞外,通过添加温和型化学渗透剂甘氨酸,改善细胞壁的透性,(R)-羰基还原酶的活力提高至1.99 U,与添加甘氨酸前相比,酶活力提高了12.4倍,比活提高了4.3倍。浓缩后的发酵液催化2-羟基苯乙酮,产生(R)-苯基乙二醇,产率为88.1%,e.e.值为93.9%。与胞内重组酶相比,产率和光学纯度分别提高了44.4%和15.9%。本研究通过构建(R)-羰基还原酶的大肠杆菌分泌表达体系,大幅度提高了(R)-羰基还原酶的比活和生物转化手性醇的效率。  相似文献   

3.
The gene encoding a deoxyriboaldolase (DERA) was cloned from the chromosomal DNA of Klebsiella pneumoniae B-4-4. This gene contains an open reading frame consisting of 780 nucleotides encoding 259 amino acid residues. The predicted amino acid sequence exhibited 94.6% homology with the sequence of DERA from Escherichia coli. The DERA of K. pneumoniae was expressed in recombinant E. coli cells, and the specific activity of the enzyme in the cell extract was as high as 2.5 U/mg, which was threefold higher than the specific activity in the K. pneumoniae cell extract. One of the E. coli transformants, 10B5/pTS8, which had a defect in alkaline phosphatase activity, was a good catalyst for 2-deoxyribose 5-phosphate (DR5P) synthesis from glyceraldehyde 3-phosphate and acetaldehyde. The E. coli cells produced DR5P from glucose and acetaldehyde in the presence of ATP. Under the optimal conditions, 100 mM DR5P was produced from 900 mM glucose, 200 mM acetaldehyde, and 100 mM ATP by the E. coli cells. The DR5P produced was further transformed to 2'-deoxyribonucleoside through coupling the enzymatic reactions of phosphopentomutase and nucleoside phosphorylase. These results indicated that production of 2'-deoxyribonucleoside from glucose, acetaldehyde, and a nucleobase is possible with the addition of a suitable energy source, such as ATP.  相似文献   

4.
The cDNA encoding for catalytic subunit of bovine enterokinase (EK(L)), to which the sequence for Kex2 protease cleavage site was inserted, was expressed in the protease deficient filamentous fungus Aspergillus niger AB1.13. Fungal transformants were obtained in which expression of the glucoamylase fusion gene resulted in secretion of the protein into growth medium. Fusion polypeptide was processed to mature EK(L) by endogenous Kex-2 like protease cleavage during secretory pathway. The highest quantity of EK(L), up to 5 mg l(-1), was obtained in soya milk medium. The secreted EK(L) was easily purified from other proteins found in A. niger culture supernatant, using ion exchange and affinity chromatography. The yield of the purified and highly active EK(L) was 1.9 mg l(-1) of culture.  相似文献   

5.
人源溶菌酶(Human lysozyme,HLZ)是一种糖苷水解酶,具有抗菌消炎的作用,其作为抗生素的替代品,已经被广泛应用于食品业、畜牧业和医疗等领域。如何获得高产量、高活性、高纯度的人源溶菌酶一直是亟待解决的技术问题。优化人源溶菌酶编码基因密码子,提高其在大肠杆菌中的适应度和表达量;将优化的基因克隆至大肠杆菌表达质粒pET21a,并将其在大肠杆菌表达菌株BL21(DE3)中诱导表达;利用8 mol/L尿素溶液对包涵体进行溶解变性后,探究一步透析、梯度透析和梯度稀释3种复性方式以及复性液中谷胱甘肽氧化还原对(GSSG/GSH)、精氨酸、甘油等复性物的浓度对重组人源溶菌酶复性的效果,获得最佳的复性方案。研究结果表明:37℃诱导温度下,利用0.5 mmol/L IPTG成功诱导了分子量约为14.7 kD的重组人源溶菌酶的表达,包涵体表达量约为380 mg/L(湿重)。包涵体经一步透析、梯度透析和梯度稀释3种复性方式复性后,测得比活力值分别为147 U/mg、335 U/mg、176 U/mg,表明最佳复性方法为梯度透析复性法。进一步探索了复性液中GSSG/GSH比值、精氨酸浓度、甘油浓度对人源溶菌酶复性效果的影响,表明当复性液中同时添加浓度比为1∶2的GSSG/GSH、4 mmol/L精氨酸和6%甘油时,复性后人源溶菌酶的最佳比活力值为1170 U/mg,显著高于3种复性物均不加时溶菌酶335 U/mg的比活力值,但低于溶菌酶标准品1732 U/mg的比活力值。成功地将人源溶菌酶基因在大肠杆菌中表达,并通过包涵体复性体系成功获得高活性重组人源溶菌酶。  相似文献   

6.
冯莉  许楹  周宁一 《微生物学通报》2018,45(8):1611-1620
【背景】细菌、酵母或植物来源的超氧化物歧化酶(Superoxide dismutase,SOD)编码基因在异源宿主中表达并提高宿主耐盐性的研究已有一些报道,其异源宿主也多为植物,而古菌来源的超氧化物歧化酶编码基因在细菌中成功表达并提高其耐盐性的研究尚无报道。【目的】寻找嗜盐古菌Haloferax sp.D1227中的超氧化物歧化酶编码基因并鉴定其功能,将其在4-硝基苯酚降解细菌Burkholderia sp.SJ98中表达,研究该古菌的超氧化物歧化酶对菌株SJ98耐盐性和降解4-硝基苯酚功能的影响。【方法】通过生物信息学方法寻找嗜盐古菌D1227中潜在的超氧化物歧化酶编码基因,利用表达载体p ET-28a和广泛宿主载体p BBR1MCS-2将其分别在E.coli BL21(DE3)和4-硝基苯酚的降解菌株SJ98中异源表达,检测细胞抽提液和纯化蛋白的超氧化物歧化酶比活力。分别以葡萄糖和4-硝基苯酚为碳源,在M9培养基和添加500 mmol/L Na Cl(Na Cl含量约3%)的M9培养基中分别培养细菌SJ98的重组菌株和空载体重组菌株,利用全自动生长曲线分析仪和高效液相色谱等方法检测重组菌株的生长能力和对4-硝基苯酚的降解能力。【结果】通过生物信息学分析,在嗜盐古菌D1227基因组中发现了潜在的超氧化物歧化酶编码基因sod A,其在E.coli BL21(DE3)和菌株SJ98中分别异源表达均具有超氧化物歧化酶活力[细胞抽提液的比活力分别为21.07±0.02 U/mg和84.56±0.16 U/mg,从BL21(DE3)菌株纯化的蛋白Sod AD1227比活力为179.46±3.43 U/mg]。在添加500 mmol/L Na Cl的M9培养基中培养时,以葡萄糖为碳源,重组菌株SJ98[p BBR-sod A]仍可正常生长,而空载体对照菌株SJ98[p BBR1MCS-2]几乎丧失了生长能力;以4-硝基苯酚为碳源,菌株SJ98[p BBR-sod A]保持了利用底物生长和降解底物的能力,而菌株SJ98[p BBR1MCS-2]的生长和降解能力几乎丧失。用软件Phyre2模拟分析Sod AD1227的单体结构,该蛋白拥有Fe/Mn-SOD家族的典型结构特征,推测其属于Fe/Mn-SOD家族。【结论】本研究为利用古菌SOD对细菌进行改造以适应高盐环境中降解有机污染物的应用提供了潜在的可行性。  相似文献   

7.
The DNA fragment encoding Kluyvera citrophila penicillin G acylase (KcPGA) was amplified and cloned into the vector pET28b to obtain a C-terminus His-tagged fusion expression plasmid. The fusion protein KcPGA was successfully overexpressed in Escherichia coli BL21(DE3). The optimal induction concentration of isopropylthio-beta-D-galactoside (IPTG) was found to be 5 microM. The fusion protein was purified in a single step by Ni-IDA affinity chromatograph to a specific activity of 35.3U/mg protein with a final yield of 89% representing a 23-fold purification. The data presented here suggest that the purified fusion protein is stable with respect to pH and temperature. The optimal pH and temperature of recombinant KcPGA are 8.5 and 55 degrees C, respectively. The Km and Vmax are 17.6 microM and 23.8 U/mg, respectively. Therefore, the high yield and high specific activity of recombinant KcPGA produced in E. coli, together with other kinetic parameters, represent an excellent basis for further development of recombinant KcPGA as an immobilized biocatalyst for industrial applications.  相似文献   

8.
从蜂房哈夫尼菌(Hafniaalvei)中克隆获得一个植酸酶编码基因appA,该基因全长1335bp,编码444个氨基酸,其中前33个氨基酸为信号肽,成熟蛋白的理论分子量为45.2kD。将基因appA克隆到大肠杆菌E.coli表达载体pET-22b( ),并在大肠杆菌中表达,表达产物具有植酸酶活性。对表达的酶蛋白进行纯化,并初步研究了该酶的酶学性质,结果表明:酶的作用最适pH值为4.5;在pH2.0~10.0范围内,酶活性保留80%以上;酶的作用最适温度为60℃;酶的比活性为356.7U/mg,酶动力学分析表明其Km为0.49mmol/L,Vmax为238U/mg;该酶对胰蛋白酶和胃蛋白酶有一定的抗性。该研究为哈夫尼菌属来源植酸酶的首次报道。  相似文献   

9.
Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format.  相似文献   

10.
Much is known about the physical properties of the Cu,Zn- and Mn-superoxide dismutases (SODs). However, the biochemical characteristics and pharmacological properties of extracellular (EC)-SOD have been severely limited due to difficulties in obtaining and purifying the enzyme. The EC-SOD cDNA was inserted into the Escherichia coli expression plasmid pET-28a(+) which contains the T7 promoter and transformed into the E. coli BL21(DE3). After induction with 1 mmol/L isopropyl beta-D-thiogalactoside, the recombinant human EC-SOD was highly expressed as inclusion bodies. SDS-PAGE analysis revealed that recombinant EC-SOD accumulated up to 26% of the total soluble protein of E. coli cells. The expression product was purified by a Ni(2+)-IDA-Sepharose 6B column. After the denaturing and refolding processes, the recombinant human EC-SOD retains the specific enzymatic activity of 920 U/mg of the purified product. The gene encoding human EC-SOD mature peptide was also inserted into the donor plasmid pFastBacHTb. After transposition, transfection, and amplification were performed, the recombinant baculoviruses infected the Tn-5B1-4 cells and EC-SOD was highly expressed in Tn-5B1-4 cells. SDS-PAGE and Western blot analysis revealed that the subunit molecular weight of the expression product is 28 kDa. Furthermore, recombinant human EC-SOD retains the enzymatic specific activity of 200 U/mg of the Tn-5B1-4 cell lysates.  相似文献   

11.
来源于超嗜热古菌Alicyclobacillus acidocaldarius的酯酶EST2是目前报道的活性最高的超嗜热酯酶,具有极大的工业应用价值。为促进EST2的生产应用,将其分别在大肠杆菌及毕赤酵母中进行异源表达,并就不同宿主对表达情况和重组酶酶学性质的影响进行了分析。在大肠杆菌和毕赤酵母中重组表达的EST2酶学性质基本一致:最适温度分别为75℃和77.5℃,最适pH均为8.0,比活力分别为4656.6 U/mg和4078.3 U/mg,70℃水浴保温4.5 h,残余活力均在70%以上。在摇瓶发酵的基础上,于5 L发酵罐中进行了重组大肠杆菌及毕赤酵母的高密度发酵。毕赤酵母高密度发酵120 h菌体干重达68 g/L,最大表达酶活力为959.6 U/ml。大肠杆菌高密度发酵25 h菌体干重达60.8 g/L,最大酶活力14825.6 U/ml,表达量是毕赤酵母的15.4倍,单位时间产量是酵母的74.2倍。结果表明大肠杆菌发酵周期短、表达量高,更适合进行嗜热酯酶EST2的高效生产,这为促进嗜热酯酶在工业生物技术产业的应用奠定了基础。  相似文献   

12.
Escherichia coli harboring a recombinant plasmid was cultivated in fed-batch culture to enhance production of a gene product. Expression of the leucine gene from Thermus thermophilus in the recombinant plasmid was examined by the assay of beta-isopropylmalate dehydrogenase activity at 75 degrees C. When E. coli was cultivated in medium without leucine, biomass concentration reached 15 g/L and the specific activity became 0.082 U/mg protein. When leucine was fed in the medium throughout cultivation, although biomass concentration reached 63 g/L, the specific activity decreased to 0.016 U/mg protein. When E. coli was cultivated in medium containing 1 g leucine/L, the specific activity remained virtually constant (about 0.13 U/mg protein) and biomass concentration reached 32 g dry cells/L. In these cultivations, growth yields of several amino acids and glucose were examined. When leucine was not added to the medium, growth yields except for histidine were lowest. When leucine was fed throughout the cultivation, growth yields of glucose and tryptophan were highest. The pH-stat was useful for feeding amino acids.  相似文献   

13.
1,3-丙二醇(1,3-propanediol,1,3-PD)是一种重要的化工原料,越来越受到广泛的关注。以弗氏柠檬酸菌(Citrobacter freundii)基因组DNA为模板,通过PCR得到1,3-丙二醇氧化还原酶(1,3-propanediol dehydrogenase,PDOR) 的基因dhaT,序列显示与来源于C.freundii DSM 30040 (Genbank U09771)相应基因的相似性为78%。将此基因构建于表达载体pSE380,得到重组质粒pSE-dhaT。重组质粒转化到宿主菌E.coli JM109中进行了表达,重组酶通过镍柱及Sephacral S-300进行纯化,重组酶SDS-PAGE结果显示有非常明显的单一的42kDa特异性蛋白条带出现。以丙醛为底物测定重组酶还原反应的最适温度为37℃、最适pH为8.0,对丙醛的Km值为10.05mmol/L,最大反应速度Vmax为37.27umol/ min /mg;以1,3-PD为底物测定重组酶氧化反应的最适温度为25℃、最适pH为10.5,对1,3-PD的Km值为1.28mmol/L,最大反应速度Vmax为25.55umol/min/mg。重组酶的还原反应比活为49.50U/mg,氧化反应比活为79.72U/mg。该酶同样具有假定的结合Fe2+的G-X-X-H-X-X-A-H-X-X-G-X-X-X-X-X-P-H-G模体保守结构。此研究为工程菌高效生产1,3-PD奠定了基础。  相似文献   

14.
Enzymes with high specific activities at low temperatures have potential uses for chemical conversions when low temperatures are required, as in the food industry. Psychrotrophic microorganisms which grow at low temperatures may be a valuable source of cold-active enzymes that have higher activities at low temperatures than enzymes found for mesophilic microorganisms. To find cold-active beta-galactosidases, we isolated and characterized several psychrotrophic microorganisms. One isolate, B7, is an Arthrobacter strain which produces beta-galactosidase when grown in lactose minimal media. Extracts have a specific activity at 30 degrees C of 2 U/mg with o-nitrophenyl-beta-D-galactopyranoside as a substrate. Two isozymes were detected when extracts were subjected to electrophoresis in a nondenaturing polyacrylamide gel and stained for activity with 5-bromo-4-chloro-indolyl-beta-D-galactopyranoside (X-Gal). When chromosomal DNA was prepared and transformed into Escherichia coli, three different genes encoding beta-galactosidase activity were obtained. We have subcloned and sequenced one of these beta-galactosidase genes from the Arthrobacter isolate B7. On the basis of amino acid sequence alignment, the gene was found to have probable catalytic sites homologous to those from the E. coli lacZ gene. The gene encoded a protein of 1,016 amino acids with a predicted molecular mass of 111 kDa. The enzyme was purified and characterized. The beta-galactosidase from isolate B7 has kinetic properties similar to those of the E. coli lacZ beta-galactosidase but has a temperature optimum 20 degrees C lower than that of the E. coli enzyme.  相似文献   

15.
短双歧杆菌(Bifidobacterium breve 203)α_D_半乳糖苷酶基因(aga1)被克隆到大肠杆菌温度诱导表达质粒pBV220中,构建重组质粒pBVaga1,转入大肠杆菌进行温度诱导表达,得到的重组酶Aga1在大肠杆菌DH5α、DH10B和BL21中的比活分别为28.08、19.44和13.85U/mg, 均高于短双歧杆菌α_D_半乳糖苷酶的比活1.76U/mg。重组质粒pBVaga1在E. coli BL21中稳定性较好。重组酶Aga1蛋白亚基分子量约67kD,最适反应温度为45℃,酶在40℃以下稳定,60℃仅剩余约5%的酶活性,70℃时酶全部失活;最适反应pH为4.0~4.4,酶在pH 3.6~6.0范围内稳定;酶对p_硝基苯酚_α_半乳糖苷的Km=1.43mmol/L,Vmax=35.71μmol/(L·min),对蜜二糖的Km=261mmol/L,Vmax=63.69μmol/(L·min);酶在蜜二糖、棉子糖水解体系中不显示转糖基活性。结果说明Aga1与已经报道的一种短双歧杆菌的α_D_半乳糖苷酶不同,是新发现的一种短双歧杆菌的α_D_半乳糖苷酶。  相似文献   

16.
The gene encoding human proinsulin has been fused in-frame with the E. coli alkaline phosphatase gene (pho A) (EC 3.1.3.1). Two constructions are described. One construction consists of the entire proinsulin gene fused to the 5'-terminal end of pho A. In the other construction a 42 base pair DNA fragment has been deleted from the 3'-terminal end of the proinsulin gene. The two purified fusion proteins are enzymatically active showing a specific activity of 10-15 U/mg and 18-25 U/mg, respectively. The first construction exhibited insulin antigenicity and was used to design a simple competitive ELISA for insulin. The lower detection limit was found to be at least 2.5 ng/ml. Both fusion proteins were also shown to have potential for use in a competitive ELISA for proinsulin.  相似文献   

17.
The alpha-galactosidase gene aga36A of Clostridium stercorarium F-9 was cloned, sequenced, and expressed in Escherichia coli. The aga36A gene consists of 2,208 nucleotides encoding a protein of 736 amino acids with a predicted molecular weight of 84,786. Aga36A is an enzyme classified in family 36 of the glycoside hydrolases and showed sequence similarity with some enzymes of family 36 such as Geobacillus (formerly Bacillus) stearothermophilus GalA (57%) and AgaN (52%). The enzyme purified from a recombinant E. coli is optimally active at 70 degrees C and pH 6.0. The enzyme hydrolyzed raffinose and guar gum with specific activities of 3.0 U/mg and 0.46 U/mg for the respective substrates.  相似文献   

18.
The DNAs encoding the non-mutant and mutant forms of pig citrate synthase (PCS) were subcloned into an expression system to determine their synthesis and stability in E. coli gltA- cells that are defective in bacterial citrate synthase. GltA- cells that expressed the non-mutant PCS DNA grew on defined minimal acetate media and produced a constant level of PCS (0.43 U/mg protein). In contrast, when the gltA- cells were transformed with the DNA encoding PCS mutations in His274 or Asp375 the cells did not grow on minimal acetate media. The presence of the mutant PCS proteins in E. coli was confirmed by protein blot and immunoisolation analyses using an antibody specific for porcine heart citrate synthase. The activities of the mutant PCS enzymes were two orders of magnitude less than the non-mutant enzyme in the total cell lysates. The data indicate that the active site amino acids, His274 and Asp375, are essential for the catalysis activity of citrate synthase.  相似文献   

19.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

20.
The gene encoding beta-D-galactosidase from Pyrococcus woesei was PCR amplified, cloned, expressed in Escherichia coli under the control of an inducible T7 promoter, purified and characterized. The expression system was developed by the construction of recombinant plasmid, based on the high copy number pUET1 vector, giving four times more efficient expression of P. woesei beta-D-galactosidase (20 mg of enzyme from 1 liter of culture) than that obtained from a previously constructed one. The recombinant enzymes were purified in a two-step procedure: double heat-denaturation of E. coli cell proteins and affinity chromatography on p-aminobenzyl 1-thio-beta-D-galactopyranoside-agarose. To achieve efficient purification of P. woesei beta-D-galactosidase by immobilized metal-ion affinity chromatography (IMAC), a His-tag was placed either at the N- or the C-terminal of the coding sequence. The obtained fusion proteins revealed the same specific activity of approximately 5400 U/mg, which was 10 times lower than the wild-type beta-D-galactosidase (51100 U/mg). The activity of P. woesei beta-D-galactosidase was enhanced by thiol compounds, Mg(2+) ions and D-galactose, and was inhibited by heavy metal ions and D-glucose, while Ca(2+) ions had no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号