首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HK97 bacteriophage capsid is a unique example of macromolecular catenanes: interlocked rings of covalently attached protein subunits. The chain mail organization of the subunits stabilizes a particle in which the maximum thickness of the protein shell is 18A and the maximum diameter is 550A. The electron density has the appearance of a balloon illustrating the extraordinary strength conferred by the unique subunit organization. The refined structure shows novel qualities of the HK97 shell protein, gp5 that, together with the protease gp4, guides the assembly and maturation of the virion. Although gp5 forms hexamers and pentamers and the subunits exist in different structural environments, the tertiary structures of the seven protein molecules in the viral asymmetric unit are closely similar. The interactions of the subunits in the shell are exceptionally complex with each subunit interacting with nine other subunits. The interactions of the N-terminus released after gp5 cleavage appear important for organization of the loops that become crosslinked to the core of a neighboring subunit at the maturation. A comparison with a model of the Prohead II structure revealed that the surfaces of non-covalent contact between the monomers that build up hexamers/pentamers are completely redefined during maturation.  相似文献   

2.
We investigated the thermodynamic basis of HK97 assembly by scanning calorimetry and cryo-electron microscopy. This pathway involves self-assembly of hexamers and pentamers of the precursor capsid protein gp5 into procapsids; proteolysis of their N-terminal Delta-domains; expansion, a major conformational change; and covalent crosslinking. The thermal denaturation parameters convey the changes in stability at successive steps in assembly, and afford estimates of the corresponding changes in free energy. The procapsid represents a kinetically accessible local minimum of free energy. In maturation, it progresses to lower minima in a cascade punctuated by irreversible processes ("locks"), i.e. proteolysis and crosslinking, that lower kinetic barriers and prevent regression. We infer that Delta-domains not only guide assembly but also restrain the procapsid from premature expansion; their removal by proteolysis is conducive to initiating expansion and to its proceeding to completion. We also analyzed the mutant E219K, whose capsomers reassemble in vitro into procapsids with vacant vertices called "whiffleballs". E219K assemblies all have markedly reduced stability compared to wild-type gp5 (DeltaT(p) approximately -7 degrees C to -10 degrees C; where T(p) is the denaturation temperature). As the mutated residue is buried in the core of gp5, we attribute the observed reduction in stability to steric and electrostatic perturbations of the packing of side-chains in the subunit interior. To explain the whiffleball phenotype, we suggest that these effects propagate to the capsomer periphery in such a way as to differentially affect the stability or solubility of dissociated pentamers, leaving only hexamers to reassemble.  相似文献   

3.
The coat protein (CP) of cowpea chlorotic mottle virus assembles exclusively into a T=3 capsid in vivo and, under proper conditions, in vitro. The N-terminal domain of CP has been implicated in proper assembly and was viewed as a required switch for mediating hexamer and pentamer formation in T=3 assembly. We observed that a mutant CP lacking most of the N-terminal domain, NDelta34, assembles, in vitro, into statistically predictable numbers of: native-like T=3 capsids of 90 dimers; "T=2" capsids of 60 dimers; T=1 capsids of 30 dimers. We generated cryo-EM image reconstructions of each form and built pseudo-atomic models based on the subunits from the crystal structure of plant-derived T=3 virus allowing a detailed comparison of stabilizing interactions in the three assemblies. The statistical nature of the distribution of assembly products and the observed structures indicates that the N-terminus of CP is not a switch that is required to form the proper ratio of hexamers and pentamers for T=3 assembly; rather, it biases the direction of assembly to T=3 particles from the possibilities available to NDelta34 through flexible dimer hinges and variations in subunit contacts. Our results are consistent with a pentamer of dimers (PODs) nucleating assembly in all cases but subunit dimers can be added with different trajectories that favor specific T=3 or T=1 global particle geometries. Formation of the "T=2" particles appears to be fundamentally different in that they not only nucleate with PODs, but assembly propagates by the addition of mostly, if not exclusively PODs generating an entirely new subunit interface in the process. These results show that capsid geometry is flexible and may readily adapt to new requirements as the virus evolves.  相似文献   

4.
Scanning calorimetry combined with cryo-electron microscopy affords a powerful approach to investigating hierarchical interactions in multi-protein complexes. Calorimetry can detect the temperatures at which certain interactions are disrupted and cryo-EM can reveal the accompanying structural changes. The procapsid of bacteriophage HK97 (Prohead I) is a 450A-diameter shell composed of 60 hexamers and 12 pentamers of gp5, organized with icosahedral symmetry. Gp5 consists of the N-terminal Delta-domain (11kDa) and gp5* (31 kDa): gp5* forms the contiguous shell from which clusters of Delta-domains extend inwards. At neutral pH, Prohead I exhibits an endothermic transition at 53 degrees C with an enthalpy change of 14 kcal/mole (of gp5 monomer). We show that this transition is reversible. To capture its structural expression, we incubated Prohead I at 60 degrees C followed by rapid freezing and, by cryo-EM, observed a capsid species 10% larger than Prohead I. At 11A resolution, visible changes are confined to the gp5 hexamers. Their Delta-domain clusters have disappeared and are presumably disordered, either by unfolding or dispersal. The gp5* hexamer rings are thinned and flattened as they assume the conformation observed in Expansion Intermediate I, a transition state of the normal, proteolysis-induced, maturation pathway. We infer that, at ambient temperatures, the hexamer Delta-domains restrain their gp5* rings from switching to a lower free energy, EI-I-like, state; above 53 degrees, this restraint is overcome. Pentamers, on the other hand, are more stably anchored and resist this thermal perturbation.  相似文献   

5.
Assembly properties of the human immunodeficiency virus type 1 CA protein   总被引:3,自引:0,他引:3  
During retroviral maturation, the CA protein oligomerizes to form a closed capsid that surrounds the viral genome. We have previously identified a series of deleterious surface mutations within human immunodeficiency virus type 1 (HIV-1) CA that alter infectivity, replication, and assembly in vivo. For this study, 27 recombinant CA proteins harboring 34 different mutations were tested for the ability to assemble into helical cylinders in vitro. These cylinders are composed of CA hexamers and are structural models for the mature viral capsid. Mutations that diminished CA assembly clustered within helices 1 and 2 in the N-terminal domain of CA and within the crystallographically defined dimer interface in the CA C-terminal domain. These mutations demonstrate the importance of these regions for CA cylinder production and, by analogy, mature capsid assembly. One CA mutant (R18A) assembled into cylinders, cones, and spheres. We suggest that these capsid shapes occur because the R18A mutation alters the frequency at which pentamers are incorporated into the hexagonal lattice. The fact that a single CA protein can simultaneously form all three known retroviral capsid morphologies supports the idea that these structures are organized on similar lattices and differ only in the distribution of 12 pentamers that allow them to close. In further support of this model, we demonstrate that the considerable morphological variation seen for conical HIV-1 capsids can be recapitulated in idealized capsid models by altering the distribution of pentamers.  相似文献   

6.
Head assembly in the double-stranded DNA coliphage HK97 involves initially the formation of the precursor shell Prohead I from approximately 420 copies of a 384-residue subunit. This is followed by proteolytic removal of residues 2-103 to create Prohead II, and then reorganization and expansion of the shell lattice and covalent cross-linking of subunits make Head II. Here, we report and structurally interpret solution Raman spectra of Prohead I, Prohead II, and Head II particles. The Raman signatures of Prohead I and Prohead II indicate a common alpha/beta fold for residues 104-385, and a strongly conserved tertiary structure. The Raman difference spectrum between Prohead I and Prohead II demonstrates that the N-terminal residues 2-103 (Delta-domain) form a predominantly alpha-helical fold devoid of beta-strand. The conformation of the Delta-domain in Prohead I thus resembles that of the previously characterized scaffolding proteins of Salmonellaphage P22 and Bacillus phage phi29 and suggests an analogous architectural role in mediating the assembly of a properly dimensioned precursor shell. The Prohead II --> Head II transition is accompanied by significant reordering of both the secondary and tertiary structures of 104-385, wherein a large increase occurs in the percentage of beta-strand (from 38 to 45%), and a marginal increase is observed in the percentage of alpha-helix (from 27 to 31%). Both are at the expense of unordered chain segments. Residue environments affected by HK97 shell maturation include the unique cysteine (Cys 362) and numerous tyrosines and tryptophans. The tertiary structural reorganization is reminiscent of that observed for the procapsid --> capsid transformation of P22. The Raman signatures of aqueous and crystalline Head II reveal no significant differences between the crystal and solution structures.  相似文献   

7.
The bacteriophage HK97 capsid is a molecular machine that exhibits large-scale conformational rearrangements of its 420 identical protein subunits during capsid maturation. Immature empty capsids, termed Prohead II, assemble in vivo in an Escherichia coli expression system. Maturation of these particles may be induced in vitro, converting them into Head II capsids that are indistinguishable in conformation from the capsid of an infectious phage particle. One method of in vitro maturation requires acidification to drive the reaction through two expansion intermediates (EI-I, EI-II) to its penultimate particle state (EI-III), which has 86% more internal volume than Prohead II. Neutralization of EI-III produces the fully mature capsid, Head II. The three expansion intermediates and the acid expansion pathway were characterized by cryo-EM analysis and 3D reconstruction. We now report that, although large-scale structural changes are involved, the electron density maps for these intermediate states are readily interpreted in terms of quasi-atomic models based on subunit structures determined by prior crystallographic analysis of Head II. Progression through the expansion intermediate states primarily represents rigid-body rotations and translations of the subunits, accompanied by refolding of two small regions, the N-terminal arm and a beta-hairpin called the E-loop. Movies made with these pseudo-atomic coordinates and the Head II X-ray coordinates illuminate various aspects of the maturation pathway in the course of which the pattern of inter-subunit interactions is sequentially transformed while the integrity of the capsid is maintained.  相似文献   

8.
Infectious bursal disease virus (IBDV), a double-stranded RNA (dsRNA) virus belonging to the Birnaviridae family, is an economically important avian pathogen. The IBDV capsid is based on a single-shelled T=13 lattice, and the only structural subunits are VP2 trimers. During capsid assembly, VP2 is synthesized as a protein precursor, called pVP2, whose 71-residue C-terminal end is proteolytically processed. The conformational flexibility of pVP2 is due to an amphipathic alpha-helix located at its C-terminal end. VP3, the other IBDV major structural protein that accomplishes numerous roles during the viral cycle, acts as a scaffolding protein required for assembly control. Here we address the molecular mechanism that defines the multimeric state of the capsid protein as hexamers or pentamers. We used a combination of three-dimensional cryo-electron microscopy maps at or close to subnanometer resolution with atomic models. Our studies suggest that the key polypeptide element, the C-terminal amphipathic alpha-helix, which acts as a transient conformational switch, is bound to the flexible VP2 C-terminal end. In addition, capsid protein oligomerization is also controlled by the progressive trimming of its C-terminal domain. The coordination of these molecular events correlates viral capsid assembly with different conformations of the amphipathic alpha-helix in the precursor capsid, as a five-alpha-helix bundle at the pentamers or an open star-like conformation at the hexamers. These results, reminiscent of the assembly pathway of positive single-stranded RNA viruses, such as nodavirus and tetravirus, add new insights into the evolutionary relationships of dsRNA viruses.  相似文献   

9.
10.
Unlike the capsids of icosahedral viruses, retroviral capsids are pleomorphic, with variably curved, closed fullerene shells composed of ∼ 250 hexamers and exactly 12 pentamers of the viral CA protein. Structures of CA oligomers have been difficult to obtain because the subunit-subunit interactions are inherently weak, and CA tends to spontaneously assemble into capsid-like particles. Guided by a cryoEM-based model of the hexagonal lattice of HIV-1 CA, we used a two-step biochemical strategy to obtain soluble CA hexamers and pentamers for crystallization. First, each oligomer was stabilized by engineering disulfide cross-links between the N-terminal domains of adjacent subunits. Second, the cross-linked oligomers were prevented from polymerizing into hyperstable, capsid-like structures by mutations that weakened the dimeric association between the C-terminal domains that link adjacent oligomers. The X-ray structures revealed that the oligomers are comprised of a fairly rigid, central symmetric ring of N-terminal domains encircled by mobile C-terminal domains. Assembly of the quasi-equivalent oligomers requires remarkably subtle rearrangements in inter-subunit quaternary bonding interactions, and appears to be controlled by an electrostatic switch that favors hexamers over pentamers. An atomic model of the complete HIV-1 capsid was then built using the fullerene cone as a template. Rigid-body rotations around two assembly interfaces are sufficient to generate the full range of continuously varying lattice curvature in the fullerene cone. The steps in determining this HIV-1 capsid atomic model exemplify the synergy of hybrid methods in structural biology, a powerful approach for exploring the structure of pleomorphic macromolecular complexes.  相似文献   

11.
The assembly and maturation of the coat protein of a T=4, nonenveloped, single-stranded RNA virus, Nudaurelia capensis omega virus (N omega V), was examined by using a recombinant baculovirus expression system. At pH 7.6, the coat protein assembles into a stable particle called the procapsid, which is 450 A in diameter and porous. Lowering the pH to 5.0 leads to a concerted reorganization of the subunits into a 410-A-diameter particle called the capsid, which has no obvious pores. This conformational change is rapid but reversible until slow, autoproteolytic cleavage occurs in at least 15% of the subunits at the lower pH. In this report, we show that expression of subunits with replacement of Asn-570, which is at the cleavage site, with Thr results in assembly of particles with expected morphology but that are cleavage defective. The conformational change from procapsid to capsid is reversible in N570T mutant virus-like particles, in contrast to wild-type particles, which are locked into the capsid conformation after cleavage of the coat protein. The reexpanded procapsids display slightly different properties than the original procapsid, suggesting hysteretic effects. Because of the stability of the procapsid under near-neutral conditions and the reversible properties of the cleavage-defective mutant, N omega V provides an excellent model for the study of pH-induced conformational changes in macromolecular assemblies. Here, we identify the relationship between cleavage and the conformational change and propose a pH-dependent helix-coil transition that may be responsible for the structural rearrangement in N omega V.  相似文献   

12.
The structure of the capsid of bacteriophage HK97 has been solved at various stages of maturity by crystallography and cryo-electron microscopy, and has been reported previously in the literature. Typically the capsid assembles through polymerization and maturation processes. Maturation is composed of proteolytic cleavages to the precursor capsid (called Prohead II), expansion triggered by DNA packaging (in which the largest conformational changes of the capsid appear), and covalent cross-links of neighboring subunits to create the mature capsid called Head II. We apply a coarse-grained elastic network interpolation (ENI) to generate a feasible pathway for conformational change from Prohead II to Head II. The icosahedral symmetry of the capsid structure offers a significant computational advantage because it is not necessary to consider the whole capsid structure but only an asymmetric unit consisting of one hexamer plus an additional subunit from an adjacent pentamer. We also analyze normal modes of the capsid structure using an elastic network model which is also subject to symmetry constraints. Using our model, we can visualize the smooth evolution of capsid expansion and revisit in more detail several interesting geometric changes recognized in early experimental works such as rigid body motion of two compact domains (A and P) with two refolding extensions (N-arm and E-loop) and track the approach of the two particular residues associated with isopeptide bonds that make hexagonal cross-links in Head II. The feasibility of the predicted pathway is also supported by the results of our normal mode analysis.  相似文献   

13.
The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.  相似文献   

14.
Bacteriophage phi29 requires scaffolding protein to assemble the 450 x 540 A prolate prohead with T = 3 symmetry end caps. In infections with a temperature-sensitive mutant scaffolding protein, capsids assemble predominantly into 370 A diameter isometric particles with T = 3 symmetry that lack a head-tail connector. However, a few larger, 430 A diameter, particles are also assembled. Cryo-electron microscopy shows that these larger particles are icosahedral with T = 4 symmetry. The prolate prohead, as well as the two isometric capsids with T = 3 and T = 4 symmetry, are composed of similar pentamers and differently skewed hexamers. The skewing of the hexamers in the equatorial region of proheads and in the T = 4 isometric particles reflects their different environments. One of the functions of the scaffolding protein, present in the prohead, may be to stabilize skewed hexamers during assembly.  相似文献   

15.
HK97 is an exceptionally amenable system for characterizing major conformational changes associated with capsid maturation in double-stranded DNA bacteriophage. HK97 undergoes a capsid expansion of ∼ 20%, accompanied by major subunit rearrangements during genome packaging. A previous 3.44-Å-resolution crystal structure of the mature capsid Head II and cryo-electron microscopy studies of other intermediate expansion forms of HK97 suggested that, primarily, rigid-body movements facilitated the maturation process. We recently reported a 3.65-Å-resolution structure of the preexpanded particle form Prohead II (P-II) and found that the capsid subunits undergo significant refolding and twisting of the tertiary structure to accommodate expansion. The P-II study focused on major twisting motions in the P-domain and on refolding of the spine helix during the transition. Here we extend the crystallographic comparison between P-II and Head II, characterizing the refolding events occurring in each of the four major domains of the capsid subunit and their effect on quaternary structure stabilization. In addition, hydrogen/deuterium exchange, coupled to mass spectrometry, was used to characterize the structural dynamics of three distinct capsid intermediates: P-II, Expansion Intermediate, and the nearly mature Head I. Differences in the solvent accessibilities of the seven quasi-equivalent capsid subunits, attributed to differences in secondary and quaternary structures, were observed in P-II. Nearly all differences in solvent accessibility among subunits disappear after the first transition to Expansion Intermediate. We show that most of the refolding is coupled to this transformation, an event associated with the transition from asymmetric to symmetric hexamers.  相似文献   

16.
SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of approximately 6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility.  相似文献   

17.
HK97 is a double-stranded DNA bacteriophage that undergoes dramatic conformational changes during viral capsid maturation and for which x-ray structures, at near atomic resolution, of multiple intermediate and mature capsid states are available. Both amide H/2H exchange and crystallographic comparisons between the pre-expanded Prohead II particles and the expanded Head II of bacteriophage HK97 revealed quaternary interactions that remain fixed throughout maturation and appear to maintain intercapsomer integrity at all quasi- and icosahedral 3-fold axes. These 3-fold staples are formed from Arg and Glu residues and a metal binding site. Mutations of either Arg-347 or Arg-194 or a double mutation of E344Q and E363A resulted in purification of the phage in capsomer form (hexamers and pentamers). Mutants that did assemble had both decreased thermal stability and decreased in vitro expansion rates. Amide H/2H exchange mass spectrometry showed that in the wild type capsid some subunits had a bent “spine” helix (highly exchanging), whereas others were straight (less exchanging). Similar analysis of the never assembled mutant capsomers showed uniform amide exchange in all of these that was higher than that of the straight spine helices (characterized in more mature intermediates), suggesting that the spine helix is somewhat bent prior to capsid assembly. The result further supports a previously proposed mechanism for capsid expansion in which the delta domains of each subunit induce a high energy intermediate conformation, which now appears to include a bent helix during capsomer assembly.The viral capsid, particularly in double-stranded DNA bacteriophage, requires a highly stable macromolecular structure capable of encapsulating genome at near liquid crystalline density. Viral capsids are composed of hundreds to thousands of individual subunits that efficiently assemble into a closed capsid form often of a highly symmetrized icosahedral geometry, avoiding kinetic traps that would result in increased off-pathway assemblies. Recent studies have proposed that capsid assembly is mediated by weak intersubunit interactions that nucleate larger assembly intermediates, resulting in a considerably more stable capsid form due to a favorable geometry with a more constrained network of interactions. Measurements in systems such as cowpea chlorotic mottle virus, hepatitis B virus, and the bacteriophages P22 and HK97 have estimated the association energy of the initial assembly interaction between two subunits at 2–5 kcal/mol, which is seemingly low for a robust assembly product (15). An entropically driven process based on burial of hydrophobic surfaces was considered the driving force for the initial weak interactions with subsequent nucleation and elongation reactions leading to assembly of the full capsid (2, 6). Most complex viruses undergo a staged assembly process involving conformational transitions that occur after the initial assembly of a procapsid (7). The process is known as virion maturation. The interplay between interactions necessary for the initial assembly of capsomers into the procapsid and those that facilitate capsid maturation have been poorly understood, but recent crystal structures of procapsid and mature capsid states of HK97 allowed us to evaluate the structural properties that may facilitate maturation.HK97 is an amenable system for the study of capsid assembly and maturation. Symmetric procapsid particles can be assembled in Escherichia coli with the expression of just two gene products, gp4 (protease) and gp5 (capsid subunit). Maturation can then be followed in vitro by lowering the pH or chemically perturbing the procapsids. Unlike bacteriophages such as P22 that assemble their capsids directly from individual monomeric subunits, HK97 subunits initially assemble into capsomers composed of six-subunit (hexamers) or five-subunit (pentamers) oligomers. Twelve pentamers and 60 hexamers then assemble to form an icosahedral capsid with a triangulation number of 7 laevo, although a portal complex substitutes one of the pentamers during in vivo assembly. Residues 2–103 at the N terminus of the subunit, referred to as the delta domain, is thought to serve the same role as the scaffolding proteins identified for other phage in the assembly process (8). Capsomers then assemble, packaging the protease (gp4), to form the initial procapsid, Prohead I (P-I).1 If the expression is done without the protease or with an inactive (by mutation) protease, this step is reversible (Fig. 1). The equilibrium of this assembly can be controlled in vitro with specific buffers and concentrations that favor either the capsomer or the capsid form (9). Expression with an active protease leads to proteolysis of the delta domains in the assembled P-I state followed by autodigestion of the protease and diffusion of the fragments from the particle. P-I then undergoes subtle structural adjustments, resulting in the Prohead II state composed entirely of the cleaved gp5* subunits (10, 11). At this stage of assembly in vivo, concatameric double-stranded DNA is packaged through a portal complex (composed of gp3 subunits) that fits into a single 5-fold vertex of the capsid. We used an HK97 construct that lacks gp3, so the purified Prohead II capsid is icosahedrally symmetric and cannot package DNA. Purified P-II can be matured in vitro using low pH and other chemical perturbation methods. During maturation, conformational changes in the subunits and their interactions result in large scale expansion and morphological changes in the capsid. The diameter of the capsid shell increases from 540 Å in P-II to 660 Å in Head II (H-II), the fully expanded particle form (12, 13). Intermediate particle forms can be trapped during the expansion and were previously characterized with a variety of biophysical techniques including cryo-EM microscopy (14, 15), x-ray crystallography (12, 13, 16), and small angle x-ray scattering (1618). During the expansion process, self-catalyzed covalent cross-links are formed through isopeptide bond formation between Lys-169 and Asn-356 of different subunits situated on adjacent capsomers (19). The reaction is promoted by Glu-363, which is adjacent to the bonding residues and functions as a proton acceptor. Cross-linking during maturation was previously shown by differential scanning calorimetry (DSC) to greatly enhance the thermal stability of HK97 (5). In addition to covalent bonding, the H-II has significantly more buried surface area than P-II as seen in the highly intercalated intersubunit interactions depicted in the previous 3.44-Å structure of Head II (13, 20). A cross-link-defective mutant, K169Y, stills undergoes particle expansion, reaching the penultimate particle form, termed Head I (H-I), which has nearly identical conformations of hexamer capsomers but less extruded pentamers than H-II (16). H-I was used for all H/2H exchange studies instead of H-II because the cross-links in H-II dramatically affect the efficiency of proteolysis required for the mass spectrometry-based experiment (12, 20).Open in a separate windowFig. 1.HK97 assembly and expansion pathway. The schematic diagram depicts the assembly and expansion of HK97 in an E. coli expression system lacking the portal protein and other machinery required for genome packaging. 42-kDa subunits assemble into hexamer and pentamer capsomers, which then assemble into an initial icosahedral procapsid shell, P-I. Proteolytic cleavage of the delta domain of each subunit results in the formation of the metastable intermediate form P-II, which is able to undergo in vitro maturation when perturbed by various chemical agents. WT expansion proceeds through EI, balloon, and ultimately H-II forms, an expansion process that involves covalent cross-linking. K169Y mutant P-II proceeds through EI to the H-I form without any cross-linking occurring. Other than the lack of cross-links, H-I is identical to balloon.It was hypothesized that for highly intercalated mature capsid forms such as that seen in bacteriophage HK97 early procapsid intermediates are necessary for initial positioning of subunits before conformational changes can facilitate a protein architecture with increased stability. We recently showed with amide H/2H exchange and crystallographic comparisons between the pre-expanded P-II particles and the mature H-II that maturation is probably guided by tertiary structure twisting and secondary structure changes around a fixed set of intercapsomer interactions that surround all quasi- and icosahedral 3-fold axes in the capsid shell (12). The major interactions that appear to facilitate these “3-fold staples” include two sets of salt bridges and a putative metal binding site (Fig. 2). The salt bridge interactions are between residues Glu-344 and Arg-194 and between residues Glu-363 and Arg-347. Glutamate 363 serves dual roles as it is involved in both a salt bridge with Arg-347 and serves as a proton acceptor that catalyzes the isopeptide bond formation (21). The metal binding site is formed by 3-fold related glutamates at position 348 interacting with a sphere of electron density at high σ level in the P-II crystal structure (12). Although comparable density for metal ions is not present at the equivalent position in crystal structures of the late intermediates, the positions of the glutamates are nearly identical, indicating a stable interaction with some mechanism for neutralizing the negative charge repulsion. In contrast to the near identical conformations of the residues at the 3-fold interface, the rest of the subunit was shown to undergo a large scale twisting motion, causing hinging in all three P-domain β-strands (see Fig. 8A for domain nomenclature). These data imply that interactions at the 3-fold interface may be crucial in assembling the capsid from individual capsomers as well as providing a fixed point from which subunits bend while maintaining intercapsomer contacts.Open in a separate windowFig. 2.Importance of 3-fold intercapsomer contacts. A, P-II capsid from previously solved 3.65-Å crystal structure rendered in low resolution in chimera. Two hexon subunits (subunits a and f, yellow and green, respectively) and one penton subunit (orange) that form a quasi-3-fold interaction are shown as ribbons. B, zoomed in view of quasi-3-fold interaction between the two hexamer subunits and one pentamer subunit as highlighted in A. The view is from inside the capsid, 180° rotated from the view shown in A. Residues involved in salt bridges as well as a putative metal binding site (Glu-348) are labeled accordingly. C, table identifying various mutations made to perturb 3-fold contacts. The phenotypes following protein expression are identified. Mutants are distinguished as to whether they were purified as capsids or capsomers (hexamers and pentamers) following protein expression. Data for the Glu-363 mutants are from Dierkes et al. (21).Open in a separate windowFig. 8.Solvent accessibility of R347N capsomer spine helix. A, subunit C of Prohead II is shown with the major domains labeled. Residues 206–216 of the spine helix are colored orange. B, mass envelopes for P-II and H-I particle forms as well as the R347N capsomers following 5 min of exchange. The top spectrum is non-deuterated P-II. C, H/2H exchange results of the residues colored orange are plotted for the R347N capsomers (orange curve) and compared with the solvent accessibility curves for the same fragment in the P-II capsid state, EI, and the nearly mature H-I capsid form. D, the solvent accessibility of the same spine helix fragment is shown for both the R347N capsomers and WT capsomers that were disassembled from the P-I state.Here we confirmed this role for the 3-fold interactions by mutagenesis of relevant residues and characterized the resulting assembly products, thermal stabilities, and maturation kinetics. Some of the mutants did not assemble into particles following the formation of capsomers (e.g. R347N). Capsomers were then purified, and the amide exchange of the spine helices was analyzed with H/2H exchange coupled to mass spectrometry (2224). Previous data illustrated a direct correlation between increased H/2H exchange and an increased bend in the helix conformation (12, 20). Amide exchange of the spine helix in the mutant capsomers was compared with previously characterized particle forms as well as P-I and WT capsomers disassembled from P-I.  相似文献   

18.
During retroviral maturation, the CA protein undergoes dramatic structural changes and establishes unique intermolecular interfaces in the mature capsid shell that are different from those that existed in the immature precursor. The most conserved region of CA, the major homology region (MHR), has been implicated in both immature and mature assembly, although the precise contribution of the MHR residues to each event has been largely undefined. To test the roles of specific MHR residues in mature capsid assembly, an in vitro system was developed that allowed for the first-time formation of Rous sarcoma virus CA into structures resembling authentic capsids. The ability of CA to assemble organized structures was destroyed by substitutions of two conserved hydrophobic MHR residues and restored by second-site suppressors, demonstrating that these MHR residues are required for the proper assembly of mature capsids in addition to any role that these amino acids may play in immature particle assembly. The defect caused by the MHR mutations was identified as an early step in the capsid assembly process. The results provide strong evidence for a model in which the hydrophobic residues of the MHR control a conformational reorganization of CA that is needed to initiate capsid assembly and suggest that the formation of an interdomain interaction occurs early during maturation.  相似文献   

19.
The assembly of the alphavirus nucleocapsid core is a multistep event requiring the association of the nucleocapsid protein with nucleic acid and the subsequent oligomerization of capsid proteins into an assembled core particle. Although the mechanism of assembly has been investigated extensively both in vivo and in vitro, no intermediates in the core assembly pathway have been identified. Through the use of both truncated and mutant Sindbis virus nucleocapsid proteins and a variety of cross-linking reagents, a possible nucleic acid-protein assembly intermediate has been detected. The cross-linked species, a covalent dimer, has been detected only in the presence of nucleic acid and with capsid proteins capable of binding nucleic acid. Optimum nucleic acid-dependent cross-linking was seen at a protein-to-nucleic-acid ratio identical to that required for maximum binding of the capsid protein to nucleic acid. Identical results were observed when cross-linking in vitro assembled core particles of both Sindbis and Ross River viruses. Purified cross-linked dimers of truncated proteins and of mutant proteins that failed to assemble were found to incorporate into assembled core particles when present as minor components in assembly reactions, suggesting that the cross-linking traps an authentic intermediate in nucleocapsid core assembly. Endoproteinase Lys-C mapping of the position of the cross-link indicated that lysine 250 of one capsid protein was cross-linked to lysine 250 of an adjacent capsid protein. Examination of the position of the cross-link in relation to the existing model of the nucleocapsid core suggests that the cross-linked species is a cross-capsomere contact between a pentamer and hexamer at the quasi-threefold axis or is a cross-capsomere contact between hexamers at the threefold axis of the icosahedral core particle and suggests several possible assembly models involving a nucleic acid-bound dimer of capsid protein as an early step in the assembly pathway.  相似文献   

20.
Many large viral capsids require special pentameric proteins at their fivefold vertices. Nevertheless, deletion of the special vertex protein gene product 24 (gp24) in bacteriophage T4 can be compensated by mutations in the homologous major capsid protein gp23. The structure of such a mutant virus, determined by cryo-electron microscopy to 26 angstroms, shows that the gp24 pentamers are replaced by mutant major capsid protein (gp23) pentamers at the vertices, thus re-creating a viral capsid prior to the evolution of specialized major capsid proteins and vertex proteins. The mutant gp23* pentamer is structurally similar to the wild-type gp24* pentamer but the insertion domain is slightly more distant from the gp23* pentamer center. There are additional SOC molecules around the gp23* pentamers in the mutant virus that were not present around the gp24* pentamers in the wild-type virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号