首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hawkins et al. [Hawkins, P.T., Berrie, C.P., Morris, A.J., and Downes, C.P. (1987) Biochem J. 243, 211-218] were unable to find any formation of inositol 1,2-cyclic 4,5-trisphosphate on muscarinic stimulation of rat parotid slices, contrary to what has been found in mouse pancreas and in platelets. We have repeated the studies of Hawkins et al. using [3H]inositol-prelabelled rat parotid minilobules and our improved HPLC method for clearly separating the three inositol trisphosphates. Substantial amounts of inositol 1,2-cyclic 4,5-trisphosphate formed on muscarinic stimulation of rat parotid minilobules, amounting to 5% of inositol 1,4,5-trisphosphate at 10 sec and one third of inositol 1,4,5-trisphosphate at 5 min.  相似文献   

2.
The formation of inositol phosphates in response to agonists was studied in brain slices, parotid gland fragments and in the insect salivary gland. The tissues were first incubated with [3H]inositol, which was incorporated into the phosphoinositides. All the tissues were found to contain glycerophosphoinositol, inositol 1-phosphate, inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate, which were identified by using anion-exchange and high-resolution anion-exchange chromatography, high-voltage paper ionophoresis and paper chromatography. There was no evidence for the existence of inositol 1:2-cyclic phosphate. A simple anion-exchange chromatographic method was developed for separating these inositol phosphates for quantitative analysis. Stimulation caused no change in the levels of glycerophosphoinositol in any of the tissues. The most prominent change concerned inositol 1,4-bisphosphate, which increased enormously in the insect salivary gland and parotid gland after stimulation with 5-hydroxytryptamine and carbachol respectively. Carbachol also induced a large increase in the level of inositol 1,4,5-trisphosphate in the parotid. Stimulation of brain slices with carbachol induced modest increase in the bis- and tris-phosphate. In all the tissues studied, there was a significant agonist-dependent increase in the level of inositol 1-phosphate. The latter may be derived from inositol 1,4-bisphosphate, because homogenates of the insect salivary gland contain a bisphosphatase in addition to a trisphosphatase. These results suggest that the earliest event in the stimulus-response pathway is the hydrolysis of polyphosphoinositides by a phosphodiesterase to yield inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate, which are subsequently hydrolysed to inositol 1-phosphate and inositol. The absence of inositol 1:2-cyclic phosphate could indicate that, at very short times after stimulation, phosphatidylinositol is not catabolized by its specific phosphodiesterase, or that any cyclic derivative liberated is rapidly hydrolysed by inositol 1:2-cyclic phosphate 2-phosphohydrolase.  相似文献   

3.
Appreciable amounts of inositol 1,2-cyclic 4,5-trisphosphate (cIP3) are formed on agonist stimulation of secretory cells, e.g., pancreas (1,2) and parotid (3,4). However, the physiological role of this compound is unknown. To obtain sufficient amounts of cIP3, we have developed a synthetic method to produce cIP3 from inositol 1,4,5-trisphosphate (I(1,4,5)P3). The method is an adaptation of the dicyclohexylcarbodiimide (DCCD) method of Khorana et al. (5), which was originally developed to synthesize 2',3'-cyclic ribonucleotides. The method involves treatment of the pyridinium salt of I(1,4,5)P3 with DCCD in pyridine water, which cyclizes part of the 1-phosphate on the inositol ring to the 1,2-cyclic phosphate. The compound identified as cIP3 cochromatographed with authentic cIP3 in two HPLC systems and on ionophoresis. It was converted to I(1,4,5)P3 on mild acid treatment--a characteristic of cyclic inositol phosphates. Inositol 1,2-cyclic 4,5-trisphosphate is then purified by HPLC. Sufficient amounts of cIP3 can be prepared by this method to carry out numerous experiments on its possible cellular role.  相似文献   

4.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

5.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

6.
When [3H]inositol-prelabelled rat parotid-gland slices were stimulated with carbachol, noradrenaline or Substance P, the major inositol trisphosphate produced with prolonged exposure to agonists was, in each case, inositol 1,3,4-trisphosphate. Much lower amounts of radioactivity were present in the inositol 1,4,5-trisphosphate fraction separated by anion-exchange h.p.l.c. Analysis of the inositol trisphosphate head group of phosphatidylinositol bisphosphate in [32P]Pi-labelled parotid glands showed the presence of phosphatidylinositol 4,5-bisphosphate, but no detectable phosphatidylinositol 3,4-bisphosphate. Carbachol-stimulated [3H]inositol-labelled parotid glands contained an inositol polyphosphate with the chromatographic properties and electrophoretic mobility of an inositol tetrakisphosphate, the probable structure of which was determined to be inositol 1,3,4,5-tetrakisphosphate. Since an enzyme in erythrocyte membranes is capable of degrading this tetrakisphosphate to inositol 1,3,4-trisphosphate, it is suggested to be the precursor of inositol 1,3,4-trisphosphate in parotid glands.  相似文献   

7.
Semi-synthetic inositol 1,2-cyclic 4,5-trisphosphate is 1/16th as potent as inositol 1,4,5-trisphosphate in releasing Ca2+ from intracellular stores in permeabilized mouse pancreatic acinar cells. Competitive displacement studies in mouse pancreatic microsomes show that the affinity of inositol 1,2-cyclic 4,5-trisphosphate is 1/20th of that of inositol 1,4,5-trisphosphate at the latter's receptor, indicating that the lower potency of inositol 1,2-cyclic 4,5-trisphosphate in releasing Ca2+ can be accounted for by a weaker affinity at the receptor. These results suggest that inositol 1,2-cyclic 4,5-trisphosphate is unlikely to play any significant role in Ca2+ mobilization, at least in mouse pancreatic acinar cells.  相似文献   

8.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

9.
When [3H]myoinositol-prelabeled pancreatic minilobules were incubated with carbamylcholine (CCh) for 30 min, followed by ionophoresis on paper of the aqueous extracts, there were distinct peaks of radioactivity immediately preceding inositol 1,4-bisphosphate (IP2) and inositol 1,4,5-trisphosphate (IP3), which, based on earlier studies with inositol 1,2-cyclic phosphate (IcP), are the expected positions for inositol 1,2-cyclic 4-bisphosphate (IcP2) and inositol 1,2-cylic 4,5-trisphosphate (IcP3). These peaks were essentially absent on ionopherograms of extracts from minilobules not incubated with CCh. Similar results were obtained with high performance liquid chromatography (HPLC), except that the putative inositol cyclic phosphate peaks eluted immediately before the non-cyclic inositol polyphosphates, as to be expected. Taking advantage of the unique acid lability of the inositol cyclic phosphates, we demonstrate that the putative inositol cyclic polyphosphate peaks were specifically eliminated by prior hydrolysis of the aqueous extracts, as shown by either ionophoresis or HPLC. After preparative isolation of putative IcP2 and IcP3 by ionophoresis, acid hydrolysis shifted the positions of putative IcP2 and IcP3 peaks to the positions of standard IP2 and IP3, respectively, as shown by either ionophoresis or HPLC. The amounts of IcP, IcP2, and IcP3 formed on CCh stimulation, as measured by ionophoresis, were 0.7, 6.8, and 29.8% of that of, IP, IP2, and IP3, respectively (average of two experiments which agreed within 10%).  相似文献   

10.
A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metabolism of these two isomers of inositol trisphosphate in carbachol-stimulated rat parotid glands. Fragments of glands were pre-labelled with myo-[2-3H]inositol, washed, and then stimulated with carbachol. At 5s after stimulation a clear increase in inositol 1,4,5-trisphosphate was detected, with no significant increase in inositol 1,3,4-trisphosphate. After this initial lag however, inositol 1,3,4-phosphate rose rapidly; by 15s it predominated over inositol 1,4,5-trisphosphate, and continued to rise so that after 15 min it was at 10-20 times the radiolabelling level of the 1,4,5-isomer. In contrast, after the initial rapid rise (maximal within 15s), inositol 1,4,5-trisphosphate levels declined to near control levels after 1 min and then rose again very gradually over the next 15 min. When a muscarinic blocker (atropine) was added after 15 min of carbachol stimulation, inositol 1,4,5-trisphosphate levels dropped to control levels within 2-3 min, whereas inositol 1,3,4-trisphosphate levels took at least 15 min to fall, consistent with the kinetics observed earlier for total parotid inositol trisphosphates [Downes & Wusteman (1983) Biochem. J. 216, 633-640]. Phosphatidylinositol bisphosphate (PtdInsP2) from stimulated and control cells were degraded chemically to inositol trisphosphate to seek evidence for 3H-labelled PtdIns(3,4)P2. No evidence could be obtained that a significant proportion of PtdInsP2 was this isomer; in control tissues it must be less than 5% of the total PtdInsP2 radiolabelled by myo-[2-3H]inositol. These data indicate that, provided that inositol 1,4,5-trisphosphate is studied independently of inositol 1,3,4-trisphosphate, the former shows metabolic characteristics consistent with its proposed role as a second messenger for calcium mobilization. The metabolic profile of inositol 1,3,4-trisphosphate is entirely different, and its function and source remain unclear.  相似文献   

11.
The phosphoinositides are metabolized by phospholipase C in response to hormone or agonist stimulation in many cell types to produce diglyceride and water-soluble inositol phosphates. We have recently shown that the phospholipase C reaction products include cyclic phosphate esters of inositol. One of these, inositol 1, 2-cyclic 4,5-trisphosphate, is active in promoting Ca2+ mobilization in platelets and in inducing changes in conductance in Limulus photoreceptors similar to those produced by light (Wilson, D. B., Connolly, T. M., Bross, T. E., Majerus, P. W., Sherman, W. R., Tyler, A., Rubin, L. J., and Brown, J. E. (1985) J. Biol. Chem. 260, 13496-13501. In the current study, we have examined the metabolism of the inositol phosphates. We find that both cyclic and non-cyclic inositol trisphosphates are metabolized by inositol 1,4,5-trisphosphate 5-phosphomonoesterase, to inositol 1,2-cyclic bisphosphate and inositol 1,4-bisphosphate, respectively. However, the apparent Km of the enzyme for the cyclic substrate is approximately 10-fold higher than for the non-cyclic substrate. These inositol bisphosphates are more slowly degraded to inositol 1,2-cyclic phosphate and inositol 1-phosphate, respectively. Inositol 1,2-cyclic phosphate is then hydrolyzed to inositol 1-phosphate, which in turn is degraded to inositol and inorganic phosphate by inositol 1-phosphate phosphatase. The human platelet inositol 1,2-cyclic phosphate hydrolase enzyme and a similar rat kidney hydrolase do not utilize the cyclic polyphosphate esters of inositol as substrates. These results suggest that the inositol cyclic phosphates and the non-cyclic inositol phosphates are metabolized separately by phosphatases to cyclic and non-cyclic inositol monophosphates. The cyclic monophosphate is then converted to inositol 1-phosphate by a cyclic hydrolase. We suggest that the enzymes that metabolize the inositol phosphates may serve to regulate cellular responses to these compounds.  相似文献   

12.
We developed a HPLC method which separates the following nine inositol-containing compounds of biological interest: inositol, inositol 1-monophosphate, inositol 2- or 4-monophosphate, inositol 1,2-cyclic phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate, glycerophosphoinositol, glycerophosphoinositol 4-monophosphate, and glycerophosphoinositol 4,5-bisphosphate. The method shows good resolution and sufficient recovery (70-80%) for each compound. By applying this method to human platelets prelabeled with [3H]inositol and stimulated with thrombin, we found an early increase of inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate. Accumulation of glycerophosphoinositol, inositol 1-monophosphate, and an inositol monophosphate which cochromatographs with inositol 2- and inositol 4-monophosphate occurs later. The method is simple, and--after removal of salts from the incubation buffer--can be directly applied to the measurement of aqueous soluble [3H]inositol-labeled compounds in biological samples.  相似文献   

13.
Cleavage of the polyphosphoinositides, catalyzed by phospholipase C purified from ram seminal vesicles, produces phosphorylated inositols containing cyclic phosphate esters (Wilson, D. B., Bross, T. E., Sherman, W. R., Berger, R. A., and Majerus, P. W. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 4013-4017). In the present study we describe the isolation and characterization of inositol 1:2-cyclic 4-bisphosphate and inositol 1:2-cyclic 4,5-trisphosphate, the two cyclic phosphate products of phospholipase C catalyzed cleavage of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, respectively. We established the structures of these two cyclic compounds through 18O labeling of phosphate moieties, phosphomonoesterase digestion, and fast atom bombardment-mass spectrometry. We examined the physiological effects of these compounds in two systems: saponin-permeabilized platelets loaded with 45Ca2+ and intact Limulus photoreceptors. Both inositol 1:2-cyclic 4,5-trisphosphate and the noncyclic inositol 1,4,5-trisphosphate, but not inositol 1:2-cyclic 4-bisphosphate, release 45Ca2+ from permeabilized platelets in a concentration-dependent manner. Injection of inositol 1:2-cyclic 4,5-trisphosphate into Limulus ventral photoreceptor cells induces both a change in membrane conductance and a transient increase in intracellular calcium ion concentration similar to those induced by light. We injected inositol 1,4,5-trisphosphate and inositol 1:2-cyclic 4,5-trisphosphate into the same photoreceptor cell and found that the cyclic compound is approximately five times more potent than the noncyclic compound in stimulating a conductance change. We speculate that inositol 1:2-cyclic 4,5-trisphosphate may function as a second messenger in stimulated cells.  相似文献   

14.
Abstract: Exposure of rat brain or parotid gland slices to muscarinic receptor agonists stimulates a phospholipase C that degrades inositol phospholipids. When tissue slices were labelled in vitro with [3H]inositol, this response could be monitored by measuring the formation of [3H]inositol phosphates. Accumulation of inositol 1,4-biphosphate in stimulated brain slices suggests that polyphosphonositides are the primary targets for phospholipase C activity. Li+ (10 m M ) in the medium completely blocked the hydrolysis of inositol 1-phosphate, partially inhibited inositol 1,4bisphosphate hydrolysis, but had no effect on the hydrolysis of inositol 1,4,5-trisphosphate by endogenous phosphatases. Muscarinic receptor pharmacology was studied by measuring the accumulation of [3H]inositol 1-phosphate in the presence of 10 m M Li+. In experiments on brain slices, the response to carbachol was antagonised by atropine with an affinity constant of approximately 8.79 ± 0.12. Dose-response curves to several muscarinic agonists were constructed using brain and parotid gland slices. The results are consistent with relatively direct coupling of low-affinity muscarinic receptors to inositol phospholipid breakdown in brain slices; full agonists were relatively more potent in the parotid gland compared with the brain. Explanations for these differences are suggested.  相似文献   

15.
1. A method has been devised for quenching cell incubations with an aqueous phenol/chloroform/EDTA mixture of neutral pH, to allow the analysis of acid-labile cell components. 2. Using this method, we have searched for the appearance of Ins(1:2cyclic,4,5)P3 [inositol 1:2(cyclic),4,5-trisphosphate] in WRK1 mammary tumour cells that were labelled to high specific radioactivity with [3H]inositol and then stimulated with 0.4 microM-vasopressin. 3. Vasopressin caused a very rapid accumulation of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate), followed by a slower decline towards the original concentration. An acid-labile and inositol-labelled compound with the chromatographic properties of Ins(1:2cyclic,4,5)P3 was present in unstimulated cells at less than 5% of the elevated concentration of Ins(1,4,5)P3. Its concentration rose 2-3-fold during stimulation for 3 min, at which time its concentration was about 5% of the elevated concentration of Ins(1,4,5)P3. 4. We conclude that Ins(1,4,5)P3 is the major product of phosphoinositidase C-catalysed phosphatidylinositol 4,5-bisphosphate hydrolysis in vasopressin-stimulated WRK1 cells. Ins(1:2cyclic,4,5)P3 is unlikely to be an important intracellular messenger in these cells, at least during the first few minutes of stimulation.  相似文献   

16.
Stimulation of human platelets by thrombin leads to rises of both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) within 10 s. The mass of Ins(1,4,5)P3 was measured in platelet extracts after conversion to [3-32P]Ins(1,3,4,5)P4 with Ins(1,4,5)P3 3-kinase and [gamma-32P]ATP. Basal levels were equivalent to 0.2 microM and rose to 1 microM within 10 s of stimulation by thrombin. The mass of Ins(1,3,4)P3 was more than 10-fold greater than that of Ins(1,4,5)P3 between 10 and 60 s of thrombin stimulation. These results indicate that the majority of InsP3 liberated by phospholipase C in stimulated platelets must be the non-cyclic Ins(1,4,5)P3 in order to allow rapid phosphorylation by Ins(1,4,5)P3 3-kinase to Ins(1,3,4,5)P4 and then dephosphorylation to Ins(1,3,4)P3 by 5-phosphomonoesterase. A significant proportion of the InsP3 extracted from thrombin-stimulated platelets under neutral conditions is resistant to Ins(1,4,5)P3 3-kinase but susceptible after acid treatment, implying the presence of inositol 1,2-cyclic 4,5-trisphosphate (Ins(1,2cyc4,5)P3. The relative proportion of Ins(1,2cyc4,5)P3 increases with time. We suggest that such gradual accumulation is attributable to the relative insensitivity of this compound to hydrolytic and phosphorylating enzymes. Therefore, early Ca2+ mobilization in platelets is more likely to be effected by Ins(1,4,5)P3 than by Ins(1,2cyc4,5)P3.  相似文献   

17.
Rat hippocampal formation slices were prelabelled with [3H]inositol and stimulated with carbachol for times between 7 s and 3 min. The [3H]inositol metabolites in an acid extract of the slices were resolved with anion-exchange HPLC. Carbachol dramatically increased the concentration of [3H]inositol monophosphate, [3H]inositol bisphosphate (two isomers), [3H]inositol 1,3,4-trisphosphate, [3H]inositol 1,4,5-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate. The levels of [3H]inositol 1,4,5-trisphosphate rose most rapidly; they were maximally elevated after only 7 s and declined toward control levels in 1 min followed by a more sustained elevation in levels for up to 3 min. When [3H]inositol 1,4,5-trisphosphate was incubated with hippocampal formation homogenates in an ATP-containing buffer it was very rapidly metabolised. After 5 min [3H]inositol 1,4-bisphosphate, [3H]inositol 1,3,4-trisphosphate, and [3H]inositol 1,3,4,5-tetrakisphosphate could be detected in the homogenates. Under similar experimental conditions [3H]inositol 1,3,4,5-tetrakisphosphate is metabolised to [3H]inositol 1,3,4-trisphosphate and an inositol bisphosphate isomer that is not [3H]inositol 1,4-bisphosphate. We conclude that like other tissues the primary event in the hippocampus following carbachol stimulation is the activation of phosphatidylinositol 4,5-bisphosphate selective phospholipase C.  相似文献   

18.
Substance P, muscarinic and alpha-adrenoceptor agonists stimulated the incorporation of [3H]inositol into phosphatidylinositol in rat parotid gland slices. Surgical denervation of the sympathetic input to the rat parotid gland by superior cervical ganglionectomy produced marked reductions in these responses. The stimulated incorporation of radiolabelled precursors into phosphatidylinositol is a measure of its resynthesis after receptor-mediated breakdown of inositol phospholipids. We therefore examined the enzymic site of the lesion induced by sympathetic denervation using parotid gland slices labelled with either [3H]inositol or [32P]phosphate and stimulated with substance P. Receptor-activated phospholipase C attack upon [3H]inositol phospholipids was assayed by measuring the formation of [3H]inositol 1-phosphate in the presence of 10 mM-Li+ to inhibit further breakdown. It was not affected by denervation. Substance P elicited a rapid breakdown of phosphatidylinositol 4,5-bisphosphate and this response was reduced in the denervated gland. The second step in stimulated phosphatidylinositol turnover, phosphorylation of diacylglycerol to phosphatidate was not affected by denervation. Sympathetic denervation appears to induce a specific enzymic lesion in the parotid gland that impairs receptor-stimulated resynthesis of phosphatidylinositol from phosphatidate. This change in membrane lipid metabolism may be related to a number of the effects of sympathetic denervation, such as agonist supersensitivity, reduced gland cell proliferation and induction of new surface receptors.  相似文献   

19.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

20.
Metabolism of inositol 1,4,5-trisphosphate was investigated in permeabilized guinea-pig hepatocytes. The conversion of [3H]inositol 1,4,5-trisphosphate to a more polar 3H-labelled compound occurred rapidly and was detected as early as 5 s. This material co-eluted from h.p.l.c. with inositol 1,3,4,5 tetrakis[32P]phosphate and is presumably an inositol tetrakisphosphate. A significant increase in the 3H-labelled material co-eluting from h.p.l.c. with inositol 1,3,4-trisphosphate occurred only after a definite lag period. Incubation of permeabilized hepatocytes with inositol 1,3,4,5-tetrakis[32P]phosphate resulted in the formation of 32P-labelled material that co-eluted with inositol 1,3,4-trisphosphate; no inositol 1,4,5-tris[32P]phosphate was produced, suggesting the action of a 5-phosphomonoesterase. The half-time of hydrolysis of inositol 1,3,4,5-tetrakis[32P]phosphate of approx. 1 min was increased to 3 min by 2,3-bisphosphoglyceric acid. Similarly, the rate of production of material tentatively designed as inositol 1,3,4-tris[32P]phosphate from the tetrakisphosphate was reduced by 10 mM-2,3-bisphosphoglyceric acid. In the absence of ATP there was no conversion of [3H]inositol 1,4,5-trisphosphate to [3H]inositol tetrakisphosphate or to [3H]inositol 1,3,4-trisphosphate, which suggests that the 1,3,4 isomer does not result from isomerization of inositol 1,4,5-trisphosphate. The results of this study suggest that the origin of the 1,3,4 isomer of inositol trisphosphate in isolated hepatocytes is inositol 1,3,4,5-tetrakisphosphate and that inositol 1,4,5-trisphosphate is rapidly converted to this tetrakisphosphate. The ability of 2,3-bisphosphoglyceric acid, an inhibitor of 5-phosphomonoesterase of red blood cell membrane, to inhibit the breakdown of the tetrakisphosphate suggests that the enzyme which removes the 5-phosphate from inositol 1,4,5-trisphosphate may also act to convert the tetrakisphosphate to inositol 1,3,4-trisphosphate. It is not known if the role of inositol 1,4,5-trisphosphate kinase is to inactivate inositol 1,4,5-trisphosphate or whether the tetrakisphosphate product may have a messenger function in the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号