首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims Much evidence suggests that plant communities on infertile soils are relatively insensitive to increased water deficit caused by increasing temperature and/or decreasing precipitation. However, a multi-decadal study of community change in the western USA does not support this conclusion. This paper tests explanations related to macroclimatic differences, overstorey effects on microclimate, variation in soil texture and plant functional traits.Methods A re-analysis was undertaken of the changes in the multi-decadal study, which concerned forest understorey communities on infertile (serpentine) and fertile soils in an aridifying climate (southern Oregan) from 1949–1951 to 2007–2008. Macroclimatic variables, overstorey cover and soil texture were used as new covariates. As an alternative measure of climate-related change, the community mean value of specific leaf area was used, a functional trait measuring drought tolerance. We investigated whether these revised analyses supported the prediction of lesser sensitivity to climate change in understorey communities on infertile serpentine soils.Key Results Overstorey cover, but not macroclimate or soil texture, was a significant covariate of community change over time. It strongly buffered understorey temperatures, was correlated with less change and averaged >50 % lower on serpentine soils, thereby counteracting the lower climate sensitivity of understorey herbs on these soils. Community mean specific leaf area showed the predicted pattern of less change over time in serpentine than non-serpentine communities.Conclusions Based on the current balance of evidence, plant communities on infertile serpentine soils are less sensitive to changes in the climatic water balance than communities on more fertile soils. However, this advantage may in some cases be lessened by their sparser overstorey cover.  相似文献   

2.
Lawlor  David W. 《Annals of botany》2007,100(4):890-891
‘Climate change’ is an all-embracing subject: increasingcarbon dioxide concentration in the atmosphere, due to the insatiableappetite of our burgeoning Homo sapiens (or perhaps better H.carbonovorum) populations for energy from fossil carbon reserves,is the main driver. The consequent global warming may lead tovery complex  相似文献   

3.
This study investigates the effects of field manipulations of local climate to determine the potential impact of climate change on plant community dynamics in a calcareous grassland. The experimental site is located in a grassland at the Wytham estate, Oxfordshire, UK. The one hectare study area is within a 10 ha abandoned arable field on Jurassic corallian limestone. Two climate change scenarios were used: warmer winters with increased summer rainfall and warmer winters with summer drought. Plant cover and species richness were significantly increased in plots receiving supplemented summer rainfall, while the amount of litter was significantly reduced. Litter formation was significantly increased by winter warming and drought. The responses of the plant community to the climate manipulations were related to the life-history attributes of the dominant species. Seedling recruitment was limited by microsite availability, which also varied in the different climate manipulations. The results are discussed in terms of successional dynamics. They suggest that warmer winters may delay succession, as gap formation in the sward will provide sites for colonisation of annuals, thereby enabling their persistence in the sward. Under wetter conditions during summer, perennial grasses tend to close the sward, thereby inhibiting the establishment of later successional species.  相似文献   

4.
Forest ecosystems with low soil nitrogen (N) availability are characterized by direct competition for this growth-limiting resource between several players, i.e. various components of vegetation, such as old-growth trees, natural regeneration and understorey species, mycorrhizal fungi, free-living fungi and bacteria. With the increase in frequency and intensity of extreme climate events predicted in current climate change scenarios, also competition for N between plants and/or soil microorganisms will be affected. In this review, we summarize the present understanding of ecosystem N cycling in N-limited forests and its interaction with extreme climate events, such as heat, drought and flooding. More specifically, the impacts of environmental stresses on microbial release and consumption of bioavailable N, N uptake and competition between plants, as well as plant and microbial uptake are presented. Furthermore, the consequences of drying–wetting cycles on N cycling are discussed. Additionally, we highlight the current methodological difficulties that limit present understanding of N cycling in forest ecosystems and the need for interdisciplinary studies.  相似文献   

5.
Plant molecular stress responses face climate change   总被引:11,自引:0,他引:11  
  相似文献   

6.
We propose a general mathematical model describing the growth and dispersal of a single species living in a 1-D spatially discrete array of habitat patches affected by a sustained and directional change in climate. Our model accounts for two important characteristics of the climate change phenomenon: (1) Scale dependency: different species may perceive the change in the environment as occurring at different rates because they perceive the environment at different scales, and (2) measure dependency: different species measure the environment differently in the sense that they may be sensible to or cue in on different aspects of it (e.g., maximum temperature, minimum temperature, accumulated temperature) which is associated with their physiological, ecological, and life history attributes, which renders some characteristics of the environment more biologically relevant than others. We show that the deterioration in the quality of habitable patches as a consequence of climate change drives the species to extinction when dispersal is not possible; otherwise, we proof and provide a numerical example that, depending on the velocity of climate change, the scale at which a species measures it, and the particular attribute of the environment that is more biologically relevant to the species under analysis, there is always a migration strategy that allows the persistence of the species such that it tracks its niche conditions through space, thus shifting its geographic range. Our mathematical analysis provides a general framework to analyze species’ responses to climate change as a relational property of a given species in interaction with a change in climate. In particular, we can analyze the persistence of species by taking into account the ways in which they measure and filter the environment. Indeed, one of our main conclusions is that there is not a single climate change but many, as it depends on the interaction between a particular species and climate. Thus, the problem is more complex than assumed by analytically tractable models of species responses to climate change.  相似文献   

7.
8.
Mountain ecosystems are currently experiencing the strongest climatic warming and the largest changes in land-use during the last millennia. The impacts of these changes on soils and their roles in the cycling of carbon and nutrients are, however, largely unknown. Here, we define mountain soils as soils from mountainous areas with cool summers and cold winters and thus, soils from ecosystems that are influenced by snow and ice and where biogeochemical processes are limited by temperature. Because climatic conditions, soil properties, plant species and productivity vary at a small scale in mountains, they provide a unique natural but a seldom used laboratory to study soil processes. In this special issue, we compile different studies on soils from European mountains, reaching from the functioning of mountain soils along natural climatic gradients to responses of greenhouse gas fluxes from mountain soils to experimental warming, soil frost and changes in precipitation.  相似文献   

9.
Increasing concern over the implications of climate change for biodiversity has led to the use of species–climate envelope models to project species extinction risk under climate‐change scenarios. However, recent studies have demonstrated significant variability in model predictions and there remains a pressing need to validate models and to reduce uncertainties. Model validation is problematic as predictions are made for events that have not yet occurred. Resubstituition and data partitioning of present‐day data sets are, therefore, commonly used to test the predictive performance of models. However, these approaches suffer from the problems of spatial and temporal autocorrelation in the calibration and validation sets. Using observed distribution shifts among 116 British breeding‐bird species over the past ~20 years, we are able to provide a first independent validation of four envelope modelling techniques under climate change. Results showed good to fair predictive performance on independent validation, although rules used to assess model performance are difficult to interpret in a decision‐planning context. We also showed that measures of performance on nonindependent data provided optimistic estimates of models' predictive ability on independent data. Artificial neural networks and generalized additive models provided generally more accurate predictions of species range shifts than generalized linear models or classification tree analysis. Data for independent model validation and replication of this study are rare and we argue that perfect validation may not in fact be conceptually possible. We also note that usefulness of models is contingent on both the questions being asked and the techniques used. Implementations of species–climate envelope models for testing hypotheses and predicting future events may prove wrong, while being potentially useful if put into appropriate context.  相似文献   

10.
11.
12.
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.  相似文献   

13.
Agroclimatic conditions in Europe under climate change   总被引:1,自引:0,他引:1  
To date, projections of European crop yields under climate change have been based almost entirely on the outputs of crop‐growth models. While this strategy can provide good estimates of the effects of climatic factors, soil conditions and management on crop yield, these models usually do not capture all of the important aspects related to crop management, or the relevant environmental factors. Moreover, crop‐simulation studies often have severe limitations with respect to the number of crops covered or the spatial extent. The present study, based on agroclimatic indices, provides a general picture of agroclimatic conditions in western and central Europe (study area lays between 8.5°W–27°E and 37–63.5°N), which allows for a more general assessment of climate‐change impacts. The results obtained from the analysis of data from 86 different sites were clustered according to an environmental stratification of Europe. The analysis was carried for the baseline (1971–2000) and future climate conditions (time horizons of 2030, 2050 and with a global temperature increase of 5 °C) based on outputs of three global circulation models. For many environmental zones, there were clear signs of deteriorating agroclimatic condition in terms of increased drought stress and shortening of the active growing season, which in some regions become increasingly squeezed between a cold winter and a hot summer. For most zones the projections show a marked need for adaptive measures to either increase soil water availability or drought resistance of crops. This study concludes that rainfed agriculture is likely to face more climate‐related risks, although the analyzed agroclimatic indicators will probably remain at a level that should permit rainfed production. However, results suggests that there is a risk of increasing number of extremely unfavorable years in many climate zones, which might result in higher interannual yield variability and constitute a challenge for proper crop management.  相似文献   

14.
Repeated defoliation and flooding trigger opposite plant morphologies, prostrated and erect ones, respectively; while both induce the consumption of carbohydrate reserves to sustain plant recovery. This study is aimed at evaluating the effects of the combination of defoliation frequency and flooding on plant regrowth and levels of crown reserves of Lotus tenuis Waldst. & Kit., a forage legume of increasing importance in grazing areas prone to soil flooding. Adult plants of L. tenuis were subjected to 40 days of flooding at a water depth of 4 cm in combination with increasing defoliation frequencies by clipping shoot mass above water level. The following plant responses were assessed: tissue porosity, plant height, biomass of the different organs, and utilization of water-soluble carbohydrates (WSCs) and starch in the crown. Flooding consistently increased plant height independently of the defoliation frequency. This response was associated with a preferential location of shoot biomass above water level and a reduction in root biomass accumulation. As a result, a second defoliation in the middle of the flooding period was more intense among plants that are taller due to flooding. These plants lost ca. 90% of their leaf biomass vs. ca. 50% among non-flooded plants. The continuous de-submergence shoot response of frequently defoliated plants was attained in accordance to a decrease of their crown reserves. Consequently, these plants registered only 27.8% of WSCs and 9.1% of starch concentrations with respect to controls. Under such stressful conditions, plants showed a marked reduction in their regrowth as evidenced by the lowest biomass in all plant compartments: shoot, crowns and roots. Increasing defoliation frequency negatively affects the tolerance of the forage legume L. tenuis to flooding stress. Our results reveal a trade-off between the common increase in plant height to emerge from water and the amount of shoot removed to tolerate defoliation. When both factors are combined and defoliation persists, plant regrowth would be constrained by the reduction of crown reserves.  相似文献   

15.
Soils consume about 40 Tg methane from the atmosphere annually. Thus, soils contribute significantly to the atmospheric methane budget. However, responses of atmospheric methane consumption to climate change are uncertain. Predicting these responses requires an understanding of the effect on methane consumption of specific variables (temperature and soil water content) as well as interactions among parameters (methane, ammonium, water content). Key considerations involve the limitations of diffusive transport and controls of methane diffusivity; limitation of methanotrophic activity by water stress; relatively slow growth rates of methane-oxidizing bacteria on atmospheric methane; ammonium toxicity. Interactions among these parameters may be particularly important, and lead to responses contrary to those predicted from changes in temperature and water content alone. Results from a number of analyses indicate that atmospheric methane consumption is especially sensitive to anthropogenic disturbances, which typically decrease activity. Continued increases in wet and dry ammonium deposition are likely to exacerbate inhibition resulting from changes in land use. Changes in hydrological regimes could further decrease activity if dry periods increase water stress at soil depths currently colonized by methanotrophs. Future trends in the soil methane sink are likely to lead to enhanced accumulation of atmospheric methane.  相似文献   

16.
Wetlands in general and mires in particular belong to the most important terrestrial carbon stocks globally. Mires (i.e. bogs, transition bogs and fens) are assumed to be especially vulnerable to climate change because they depend on specific, namely cool and humid, climatic conditions. In this paper, we use distribution data of the nine mire types to be found in Austria and habitat distribution models for four IPCC scenarios to evaluate climate change induced risks for mire ecosystems within the 21st century. We found that climatic factors substantially contribute to explain the current distribution of all nine Austrian mire ecosystem types. Summer temperature proved to be the most important predictor for the majority of mire ecosystems. Precipitation—mostly spring and summer precipitation sums—was influential for some mire ecosystem types which depend partly or entirely on ground water supply (e.g. fens). We found severe climate change induced risks for all mire ecosystems, with rain-fed bog ecosystems being most threatened. Differences between scenarios are moderate for the mid-21st century, but become more pronounced towards the end of the 21st century, with near total loss of climate space projected for some ecosystem types (bogs, quagmires) under severe climate change. Our results imply that even under minimum expected, i.e. inevitable climate change, climatic risks for mires in Austria will be considerable. Nevertheless, the pronounced differences in projected habitat loss between moderate and severe climate change scenarios indicate that limiting future warming will likely contribute to enhance long-term survival of mire ecosystems, and to reduce future greenhouse gas emissions from decomposing peat. Effectively stopping and reversing the deterioration of mire ecosystems caused by conventional threats can be regarded as a contribution to climate change mitigation. Because hydrologically intact mires are more resilient to climatic changes, this would also maintain the nature conservation value of mires, and help to reduce the severe climatic risks to which most Austrian mire ecosystems may be exposed in the 2nd half of the 21st century according to IPCC scenarios.  相似文献   

17.
Predictions of future species' ranges under climate change are needed for conservation planning, for which species distribution models (SDMs) are widely used. However, global climate model-based (GCM) output grids can bias the area identified as suitable when these are used as SDM predictor variables, because GCM outputs, typically at least 50x50 km, are biologically coarse. We tested the assumption that species ranges can be equally well portrayed in SDMs operating on base data of different grid sizes by comparing SDM performance statistics and area selected by four SDMs run at seven grid sizes, for nine species of contrasting range size. Area selected was disproportionately larger for SDMs run on larger grid sizes, indicating a cut-off point above which model results were less reliable. Up to 2.89 times more species range area was selected by SDMs operating on grids above 50x50 km, compared to SDMs operating at 1 km2. Spatial congruence between areas selected as range also diverged as grid size increased, particularly for species with ranges between 20000 and 90000 km2. These results indicate the need for caution when using such data to plan future protected areas, because an overly large predicted range could lead to inappropriate reserve location selection.  相似文献   

18.
19.
Temporal changes in the area of 10 significant wetlands in Iran were determined using the remote sensing image of TM and ETM+ band 5 for a period of 15 years (1998–2012). The relationship between the annual time series of the area and the difference of precipitation and potential evaporation (P-E) was obtained for the wetlands using three evaporation methods. The area of the wetlands was predicted for 2050 using the best-fitting model and seven global climate models under four representative concentration pathways (a total of 28 climate scenarios). The area of five wetlands had a significant positive correlation with the P-E (R2 > 0.72). The area of one wetland (Ghoorigol) is predicted to increase and the area of four wetlands (Bakhtegan, Chaghakhor, Parishan and Gavkhooni) is predicted to decrease in 2050 in comparison to the maximum area of the wetlands from 1998 to 2012 under all the climate scenarios. In comparison to the mean area of the wetlands (1998–2012), one wetland (Ghoorigol) is predicted to be larger and two wetlands (Gavkhooni and Parishan) are predicted to be smaller under all the climate scenarios. Two wetlands (Bakhtegan and Chaghakhor) are predicted to be larger under most of the climate scenarios in 2050. The Uromia wetland, the largest wetland in Iran, is predicted to become completely dry by 2032 if anthropogenic impacts continue similar to what occurred from 1998 to 2012.  相似文献   

20.
Rapid climate change will impose strong directional selection pressures on natural plant populations. Climate-linked genetic variation in natural populations indicates that an evolutionary response is possible. We investigated such a response by comparing individuals subjected to elevated drought and warming treatments with individuals establishing in an unmanipulated climate within the same population. We report that reduction in seedling establishment in response to climate manipulations is nonrandom and results from the selection pressure imposed by artificially warmed and droughted conditions. When compared against control samples, high single-locus genetic divergence occurred in drought and warming treatment samples, with genetic differentiation up to 37 times higher than background (mean neutral locus) genetic differentiation. These loci violate assumptions of selective neutrality, indicating the signature of natural selection by drought. Our results demonstrate that rapid evolution in response to climate change may be widespread in natural populations, based on genetic variation already present within the population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号