首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diversity of cyanobacteria in the North-Eastern region of India has not been studied except for a few sporadic and inconclusive reports. Loktak Lake is a huge reservoir for various kinds of organisms, including cyanobacteria. The present study describes the isolation and molecular diversity of 72 filamentous, heterocystous cyanobacterial strains isolated from samples collected from Loktak Lake, its adjoining rice fields and rice fields in Indian Council of Agricultural Research (ICAR) complex, Shillong, Meghalaya, India. The isolated strains belonged to the genera Anabaena, Nostoc, Calothrix, Cylindrospermum and Mastigocladus. The molecular analysis of isolates revealed the occurrence of certain strains being present in the sample collected from the rice fields falling in the catchment area of Loktak Lake, Manipur and rice fields in ICAR complex, Shillong, Meghalaya both. A polyphasic approach based on morphological features and PCR based molecular polymorphism revealed enormous level of molecular diversity. Out of three primers targeted regions used for determining genetic polymorphism, STRR1A produced best fingerprint profile of cyanobacterial strains. The morphological diversity of isolates was assured by light microscope whereas PCR based multiple fingerprint profile was used for molecular characterization. Molecular typing using short tandemly repeated repetitive STRR1A sequences as primer provided strain specific fingerprint profiles of the isolates.  相似文献   

2.
Highly iterated palindromes (HIP) have been used as high resolution molecular markers for assessing the genetic variability and phylogenetic relatedness of heterocystous cyanobacteria (subsections IV and V) representing 12 genera of heterocystous cyanobacteria, collected from different geographical areas of India. DNA fingerprints generated using four HIP markers viz. HIP-AT, HIP-CA, HIP-GC, and HIP-TG showed 100 % polymorphism in all the heterocystous cyanobacteria studied and each marker produced unique and strain-specific banding pattern. Furthermore, phylogenetic affinities based on the dendrogram constructed using HIP DNA profiles of heterocystous cyanobacteria suggest the monophyletic origin of this entire heterocystous clade along with a clear illustration of the polyphyletic origin of the branched Stigonematalean order (Subsection V). In addition, phylogenetic affinities were validated by principal component analysis of the HIP fingerprints. The overall data obtained by both the phylogeny and principal component assessments proved that the entire heterocystous clade was intermixed, and there are immediate needs for classificatory reforms that satisfy morphological plasticity and environmental concerns.  相似文献   

3.
A Vioque 《Nucleic acids research》1997,25(17):3471-3477
The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA.  相似文献   

4.
5.
The presence of repeated DNA (short tandemly repeated repetitive [STRR] and long tandemly repeated repetitive [LTRR]) sequences in the genome of cyanobacteria was used to generate a fingerprint method for symbiotic and free-living isolates. Primers corresponding to the STRR and LTRR sequences were used in the PCR, resulting in a method which generate specific fingerprints for individual isolates. The method was useful both with purified DNA and with intact cyanobacterial filaments or cells as templates for the PCR. Twenty-three Nostoc isolates from a total of 35 were symbiotic isolates from the angiosperm Gunnera species, including isolates from the same Gunnera species as well as from different species. The results show a genetic similarity among isolates from different Gunnera species as well as a genetic heterogeneity among isolates from the same Gunnera species. Isolates which have been postulated to be closely related or identical revealed similar results by the PCR method, indicating that the technique is useful for clustering of even closely related strains. The method was applied to nonheterocystus cyanobacteria from which a fingerprint pattern was obtained.  相似文献   

6.
Highly repetitive DNA sequences in cyanobacterial genomes.   总被引:27,自引:7,他引:20       下载免费PDF全文
We characterized three distinct families of repeated sequences in the genome of the cyanobacterium Calothrix sp. strain PCC 7601. These repeated sequences were present at a level of about 100 copies per Calothrix genome and consisted of tandemly amplified heptanucleotides. These elements were named short tandemly repeated repetitive (STRR) sequences. We used the three different Calothrix STRR sequences as probes to perform Southern hybridization experiments with DNAs extracted from various cyanobacterial strains, Bacillus subtilis, and Escherichia coli. The three different STRR sequences were found as repetitive genomic DNA components specific to the heterocystous strains tested. The role of the STRR sequences, as well as their possible use in taxonomic studies, is discussed.  相似文献   

7.
This paper aims to develop methods for quantifying their establishment; using physiological activity (chlorophyll as a growth index and nitrogen-fixing potential as a measure of their biofertilizing capacity), along with evaluation based on DNA fingerprints generated using repeat sequences/palindromes. Time course studies were undertaken in liquid and soil microcosm experiments inoculated with a set of four rhizosphere cyanobacterial strains (BF1 Anabaena sp., BF2 Nostoc sp., BF3 Nostoc sp., BF4 Anabaena sp.). Observations revealed the synergistic effect of three-membered combinations (especially the i.e. BF1 + 2 + 3, 1 + 2 + 4, 1 + 3 + 4) in terms of enhancing chlorophyll and acetylene reducing activity. PCR-based amplification profiles (using short tandemly repetitive repeat (STRR) 1A, STRRmod, and HIPAT sequences) proved discriminative in monitoring the presence of the inoculated cyanobacteria in soil microcosm. Future work is in progress to assess the utility of the selected markers/primers in pot experiments, followed by field-level experiments with crop.  相似文献   

8.
Ecosystems of rice paddies are good sources of new strains of heterocyst-forming cyanobacteria that can be used in biotechnological systems for production of photohydrogen. The morphological and physiological properties of two novel epiphytic strains of cyanobacteria, Anabaena sp. 182 and Anabaena sp. 281, were studied. DNA typing of these strains based on PCR amplification of hydrogenase-encoding genes and DNA analysis using RAPD and Rep primers was carried out. The properties of the genome of strain Anabaena sp. 281 differed considerably from those of two reference strains (Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120) with sequenced genomes, whereas strain Anabaena sp. 182 was found to be a close relative of A. variabilis ATCC 29413. Due to a number of physiological and biochemical advantages, Anabaena sp. 182 may be considered a new promising model for molecular and genetic engineering studies aimed at the development of H2 producers.  相似文献   

9.
Phylogenetic comparison has been done among the selected heterocystous cyanobacteria belonging to the sections IV and V. The hierarchical cluster analysis based on antibiotics sensitivity showed a distant relationship between the members of Nostocales and Stigonematales. Thus, multiple antibiotic resistance pattern used as marker provide easy, fast, and reliable method for strain discrimination and genetic variability. However, morphological, physiological (both based on principal component analysis) and biochemical analysis grouped true branching cyanobacteria along with the members of section IV. Molecular analysis based on 16S rRNA gene sequences revealed that Hapalosiphon welwitschii and Westiellopsis sp. were grouped in cluster I whereas Scytonema bohnerii, a false branching genera showed a close proximity with Calothrix brevissima in cluster II. Cluster III of clade 2 included Nostoc calcicola and Anabaena oryzae which proved the heterogeneity at the generic level. Cluster IV the largest group of clade 2 based on 16S rRNA gene sequences includes six strains of the genera Nostoc, Anabaena, and Cylindrospermum showing ambiguous evolutionary relationship. In cluster IV, Anabaena sp. and Anabaena doliolum were phylogenetically linked by sharing 99% sequence similarity. Probably, they were of the same genetic makeup but appear differently under the diverse physiological conditions. Section IV showed polyphyletic origin whereas section V showed monophyletic origin. Results suggested that either morphological or physiological or biochemical or molecular attribute is not sufficient to provide true diversity and phylogeny of the cyanobacteria at the generic level and thus, a polyphasic approach would be more appropriate and reliable.  相似文献   

10.
Lake Taihu has been severely eutrophied during the last few decades and dense cyanobacterial blooms have led to a decrease in phytoplankton diversity. The cyanobacterial blooms in Lake Taihu were mainly composed of unicellular colony-forming Microcystis and filamentous heterocystous Dolichospermum (formerly known as planktonic species of Anabaena). In contrast to that of Microcystis spp., the fundamental knowledge about diversity, abundance and dynamics of Dolichospermum populations in Lake Taihu is lacking. The present study was conducted to understand genotypic distribution, dynamics and succession of Dolichospermum populations in Lake Taihu. By sequencing 688 internal transcribed spacer (ITS) regions between the 16S and 23S rRNA genes of Dolichospermum, we were able to confirm that all the sequences were Dolichospermum rather than Aphanizomenon. 118 different genotypes were identified from the obtained sequences, and two genotypes (W-type and L-type) were found to dominate in the lake, representing 36.6% and 26.2% of the total sequences, respectively. These two dominant genotypes of Dolichospermum displayed the significant seasonal pattern. Stepwise regressions analysis revealed that water temperature was associated with the two dominant genotypes. The combined results implied the possible existence of ecotypes in bloom-forming cyanobacteria, probably triggered by water temperature in the lake.  相似文献   

11.

Background

Salinity is known to affect almost half of the world's irrigated lands, especially rice fields. Furthermore, cyanobacteria, one of the critical inhabitants of rice fields have been characterized at molecular level from many different geographical locations. This study, for the first time, has examined the molecular diversity of cyanobacteria inhabiting Indian rice fields which experience various levels of salinity.

Results

Ten physicochemical parameters were analyzed for samples collected from twenty experimental sites. Electrical conductivity data were used to classify the soils and to investigate relationship between soil salinity and cyanobacterial diversity. The cyanobacterial communities were analyzed using semi-nested 16S rRNA gene PCR and denaturing gradient gel electrophoresis. Out of 51 DGGE bands selected for sequencing only 31 which showed difference in sequences were subjected to further analysis. BLAST analysis revealed highest similarity for twenty nine of the sequences with cyanobacteria, and the other two to plant plastids. Clusters obtained based on morphological and molecular attributes of cyanobacteria were correlated to soil salinity. Among six different clades, clades 1, 2, 4 and 6 contained cyanobacteria inhabiting normal or low saline (having EC < 4.0 ds m-1) to (high) saline soils (having EC > 4.0 ds m-1), however, clade 5 represented the cyanobacteria inhabiting only saline soils. Whilst, clade 3 contained cyanobacteria from normal soils. The presence of DGGE band corresponding to Aulosira strains were present in large number of soil indicating its wide distribution over a range of salinities, as were Nostoc, Anabaena, and Hapalosiphon although to a lesser extent in the sites studied.

Conclusion

Low salinity favored the presence of heterocystous cyanobacteria, while very high salinity mainly supported the growth of non-heterocystous genera. High nitrogen content in the low salt soils is proposed to be a result of reduced ammonia volatilization compared to the high salt soils. Although many environmental factors could potentially determine the microbial community present in these multidimensional ecosystems, changes in the diversity of cyanobacteria in rice fields was correlated to salinity.  相似文献   

12.
Detailed phylogenetic and comparative genomic analyses are reported on 140 genome sequenced cyanobacteria with the main focus on the heterocyst-differentiating cyanobacteria. In a phylogenetic tree for cyanobacteria based upon concatenated sequences for 32 conserved proteins, the available cyanobacteria formed 8–9 strongly supported clades at the highest level, which may correspond to the higher taxonomic clades of this phylum. One of these clades contained all heterocystous cyanobacteria; within this clade, the members exhibiting either true (Nostocales) or false (Stigonematales) branching of filaments were intermixed indicating that the division of the heterocysts-forming cyanobacteria into these two groups is not supported by phylogenetic considerations. However, in both the protein tree as well as in the 16S rRNA gene tree, the akinete-forming heterocystous cyanobacteria formed a distinct clade. Within this clade, the members which differentiate into hormogonia or those which lack this ability were also separated into distinct groups. A novel molecular signature identified in this work that is uniquely shared by the akinete-forming heterocystous cyanobacteria provides further evidence that the members of this group are specifically related and they shared a common ancestor exclusive of the other cyanobacteria. Detailed comparative analyses on protein sequences from the genomes of heterocystous cyanobacteria reported here have also identified eight conserved signature indels (CSIs) in proteins involved in a broad range of functions, and three conserved signature proteins, that are either uniquely or mainly found in all heterocysts-forming cyanobacteria, but generally not found in other cyanobacteria. These molecular markers provide novel means for the identification of heterocystous cyanobacteria, and they provide evidence of their monophyletic origin. Additionally, this work has also identified seven CSIs in other proteins which in addition to the heterocystous cyanobacteria are uniquely shared by two smaller clades of cyanobacteria, which form the successive outgroups of the clade comprising of the heterocystous cyanobacteria in the protein trees. Based upon their close relationship to the heterocystous cyanobacteria, the members of these clades are indicated to be the closest relatives of the heterocysts-forming cyanobacteria.  相似文献   

13.
The presence of repetitive DNA sequences viz., short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP), in the cyanobacterial genome were used to generate a PCR-based fingerprint pattern of nine cyanobacterial cultures (both stress tolerant and non-tolerant), belonging to the genus Westiellopsis. By this method it was possible to generate distinguishing fingerprint patterns for all the isolates and cluster isolates with similar stress tolerance properties. This study reveals the utility of repetitive DNA sequences in the cyanobacterial genome, for differentiation of Westiellopsis cultures and clustering strains that posses similar stress tolerance properties.  相似文献   

14.
A 329 bp DNA segment from both Anabaena variabilis and Anabaena PCC 7119 was amplified using the polymerase chain reaction (PCR). The sequences from the two cyanobacteria showed strong similarities to the corresponding part of the nifJ gene from Klebsiella pneumoniae and Enterobacter agglomerans. The present findings underline earlier results of enzymatic studies that heterocystous cyanobacteria possess a pyruvate: ferredoxin (flavodoxin) oxidoreductase (PFO). The nifJ gene segment could not be detected in the non-dinitrogenfixing, unicellular cyanobacterium Anacystis nidulans which is also in accord with previous findings from enzyme assays.  相似文献   

15.
The segregation of Nostoc and Anabaena into separate genera has been debated for some time. The nitrogen fixation gene nifD was completely sequenced from representatives of these genera and analyzed phylogenetically, by using the representatives of other genera of the heterocystous cyanobacteria as outgroups. We were clearly able to differentiate between Nostoc and Anabaena in all analyses used. Our data suggest that Nostoc and Anabaena should remain as separate genera. Received: 16 November 2001 / Accepted: 14 December 2001  相似文献   

16.
The diversity among 45 cyanobacterial isolates from 11 different Gunnera species originating from different geographical areas was examined. By means of polymerase chain reaction (PCR) fingerprinting with short tandemly repeated repetitive (STRR) sequences as primers, ten groups of symbiotic cyanobacteria and five unique isolates not belonging to a particular group were identified. Most groups were restricted to one geographical area, indicating a limited distribution of related cyanobacterial strains. An extensive cyanobacterial diversity was found both within and between the 11 different Gunnera species. Within a particular plant and even within the same stem gland, more than one cyanobacterial strain at a time could be present. These results indicate a low specificity in Gunnera-Nostoc symbiosis.  相似文献   

17.
Summary Labeled probes carrying the Anabaena PCC 7120 nitrogenase (nifK and nifD) and nitrogenase reductase (nifH) genes were hybridized to Southern blots of DNA from diverse N2-fixing cyanobacteria in order to test a previous observation of different nif gene organization in nonheterocystous and heterocystous strains. The nif probes showed no significant hybridization to DNA from a unicellular cyanobacterium incapable of N2 fixation. All nonheterocystous cyanobacteria examined (unicellular and filamentous) had a contiguous nifKDH gene cluster whereas all of the heterocystous strains showed separation of nifK from contiguous nifDH genes. These findings suggest that nonheterocystous and heterocystous cyanobacteria have characteristic and fundamentally different nif gene arrangements. The noncontiguous nif gene pattern, as shown with two Het- mutants, is independent of phenotypic expression of heterocyst differentiation and aerobic N2-fixation. Thus nif arrangement could be a useful taxonomic marker to distinguish between phenotypically Het- heterocystous cyanobacteria and phylogenetically unrelated nonheterocystous strains.  相似文献   

18.
Characterization of HetR protein turnover in Anabaena sp. PCC 7120   总被引:2,自引:0,他引:2  
The hetR gene plays an important role in heterocyst development and pattern formation in heterocystous cyanobacteria. The hetR gene from Anabaena sp. PCC 7120 was overexpressed in Escherichia coli. Antibodies raised against the recombinant HetR protein (rHetR) were used to characterize metabolism of the HetR of Anabaena sp. PCC 7120 in vivo. HetR was present at a low level when Anabaena sp. PCC 7120 was grown in the presence of combined nitrogen. Shifting from nitrogen repletion conditions to nitrogen depletion conditions led to a two fold increase of HetR in total cell extracts, and most of HetR was located in heterocysts. The amount of HetR in total cellular extracts increased rapidly after shifting to nitrogen depletion conditions and reached a maximum level 3 h after the shift. Isoelectrofocusing electrophoresis revealed that the native HetR had a more acidic isoelectric point than did rHetR. After combined nitrogen was added to the nitrogen-depleted cultures, the degradation of HetR depended on culture conditions: before heterocysts were fully developed, HetR was rapidly degraded; after heterocysts were fully developed, HetR was degraded much more slowly. The distribution of HetR in other species of cyanobacteria was also studied. Received: 24 June 1997 / Accepted: 5 December 1997  相似文献   

19.
The diversity among 853 isolates of nitrogen-fixing cyanobacteria obtained from soil samples collected from different ecosystems including mountainous, forest and cultivated areas in the central, northern and northeastern regions of Thailand was examined. Most isolates showed slow growth rate and had filamentous, heterocystous cells. The percentage of heterocysts in the filaments of different isolates varied from 8.3 to 9.6. Only a few strains showed high nitrogen-fixing potential, while most of the strains exhibited low capacity for nitrogen fixation. Anabaena and Nostoc were the dominant genera among these isolates. One hundred and two isolates were randomly selected from this diverse collection to determine the extent of genetic diversity on the basis of DNA fingerprinting using the PCR method. Based on the PCR products obtained by using a combination of three primers, all strains could be distinguished from one another. When a subset of 45 isolates of Nostoc and a subset of 44 isolates of Anabaena were further analysed by PCR, a wide range of diversity was observed within each of these genera.  相似文献   

20.
Bioinformatic tools guided PCR amplification assays were employed for analyzing two Anabaena strains A. laxa and A. iyengarii which exhibited chitosanase activity, allelopathic and fungicidal activity. Sequencing of a 297 bp fragment obtained by amplification with primers directed towards mcy A gene (involved in the production of microcystins), revealed significant similarity with the condensation domain, while amplification with specific primers towards N-methyltransferase (NMT) domain showed 59% similarity with a homologous domain in a toxic strain of Microcystis aeruginosa. An amplified product of 172 bp obtained using specific primers derived from the coding region of chitinase (chi IS) gene in Streptomyces sp., showed 100% similarity with hydrogenbyrinic acid a, c-diamide cobaltochelatase gene in Anabaena, and significant similarity with chi IS gene of Streptomyces sp. under less stringent conditions. The 663 bp sequence obtained by employing specific primers for chitosanase (choA) derived from Mitsuaria chitosanitabida 3001 strain, showed 100% similarity with glycoside hydrolase family three domain like protein(s). This study is a first time report on the presence of homologues of chitosanase in cyanobacteria which can play a role in allelopathic activity exhibited by these oxygenic photosynthetic prokaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号