首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of DNA-protein cross-links (DPC) and DNA single-strand breaks (SSB) in spleen lymphocytes were studied in mice exposed to low-intensity gamma-radiation (1.7 mGy/day) for 1, 4, 10, 20, and 30 days. The spleen mass and count of lymphocytes isolated from this organ also has been investigated. The significant increase in the DPC level as compared to the control occurred on the 10-th and 30-th days of irradiation at doses of 1.7 and 5.1 cGy, accordingly. The number of spleen lymphocytes normalized to organ mass significantly decreased on the 4-th and 30-th days of the experiment. No increase was found in levels of alkali-labile sites and SSB. In contrast, the increase in the amount of duplex form DNA was recorded on the 4-th and 30-th days of the experiment. Our indicate that DPC formation after irradiation at low doses represents some form of cellular response to the damaging agent.  相似文献   

2.
The effect of Concanavalin A (ConA) on DNA synthesis in cultured rabbit spleen lymphocytes has been analysed by determining, for different doses, labelling index and number of grains/cell after pulses of radioactive precursors at different moments of culture. The results permit to suggest the existence of two different populations sensitive to different doses of ConA, the less sensitive one being superior in number to the other one. Modifications of labelling caused by changes of doses of stimulant in course of culture confirm this assumption. These populations could correspond to different stages of maturation of T cells or could represent classes of T helper and T suppressor cells. On the other hand, the dose of ConA determines the overall level of incorporation/cell, which leads to suggest that, in each population, the duration of the induced S phase depends on the dose of stimulant.  相似文献   

3.
UVC irradiation of mammalian cells induces DNA lesions, which can give rise to transient DNA breaks at subsequent incubation of the cells. The yield of these transient DNA breaks depends on the incision rate as well as on the polymerase and ligation rates. It has previously been shown that the yield of transient DNA breaks is drastically lowered in human lymphocytes if the 4 deoxynucleosides are added to the culture medium during the repair period after UVC irradiation. The present results show that addition of the combination dAdo dGuo dThd or addition of the combination dAdo dThd also efficiently reduces the yield of transient DNA breaks during a repair period of 3 h after the UVC irradiation. Other combinations of deoxynucleosides are less efficient or not efficient at all. This indicates that the pool sizes of dATP and dTTP affect the yield of transient DNA breaks in human lymphocytes. However, the present data also indicate that the number of processed repair sites does not increase during the repair period after UVC irradiation, if the combination dAdo dThd is present in the culture medium during the repair period. Therefore, it is proposed that the presence of dAdo dThd affects the rate of insertion of repair patches but not the total amount of synthesized and inserted patches.  相似文献   

4.
The effects of adriamycin (AM) on DNA repair replication, the frequency of sister-chromatid exchange (SCE), the rate of cell proliferation and the frequency of DNA strand breaks were studied in human cells in vitro. No repair replication was observed in lymphocytes exposed to AM in concentrations up to 10?3 moles/1. DNA repair replication induced by UV and alkylating agents was not affected by a concentration of AM that completely inhibited cell proliferation (10?6 moles/1).Fibroblasts exposed to AM at 10?4 moles/1 in the presence of hydroxyurea showed an increase of strand breaks and cross-links in DNA. When AM was added to UV-irradiated fibroblasts, there was an increase of DNA strand breaks in addition to the breaks caused by UV alone. Similar effects were observed in lymphocytes.A dose-dependent increase of SCE was observed in lymphocytes exposed to low concentrations of AM (<10?7 moles/1). At higher concentrations the increase of SCE levelled off, and cell proliferation became severely inhibited. There was no evidence of removal of SCE-inducing damage in cells exposed to AM during G0 or G1. The level of SCE induced in the third cell cycle after treatment with AM was not different from that induced during the first two cell cycles.These results suggest that the various genotoxic and cytotoxic effects of AM are caused by different types of cellular damage. Moreover, AM-induced DNA damage persists for several cell cycles in human cells in vitro and seems to be resistant to repair activity.  相似文献   

5.
Human lymphocytes were treated with combined UVC radiation and X-rays or they were X-irradiated and incubated for 60–90 min in the presence of DNA-repair inhibitor ara-C. The X-ray induced chromosome exchange aberration yield was enhanced both by UVC and ara-C by approximately a factor of two in the linear (low dose) portion of the dose-response curve. The enhancement was small in the dose squared (high dose) portion where previous dose-fractionation experiments have shown that X-ray-induced lesions leading to aberrations exist for several hours. The yield of aberrations in lymphocytes incubated after irradiation in the presence of ara-C reaches a saturation level almost immediately after irradiation (5–15 min). These cytogenetic observations together with a previous finding (Holmberg and Strausmanis, 1983) give direct and indirect evidence that the enhanced aberration yield is due to short-lived DNA breaks formed immediately after X-irradiation.

Measurements on the repair kinetics of the DNA breaks induced by X-irradiation show that ara-C strongly impairs the repair of short-lived X-ray-induced DNA breaks. It was also observed that the DNA breaks generated after UVC irradiation occur almost immediately after irradiation and the level of these transient DNA breaks reaches saturation even for short incubation times. Thus, the repair of these breaks can compete with the repair of short-lived X-ray-induced DNA-breaks in combined irradiation with UVC and X-rays.

The experimental results can be explained on the assumption that X-ray-induced aberrations originate from exchange complexes formed in interactions between both short-lived DNA breaks. The short-lived DNA breaks give rise to exchange complexes mainly within single ionization tracks where the DNA breaks are close together. The time between irradiation and exchange complex formation is of the order of 5–15 min within such a track, and short-lived breaks might be repaired before complexes have been formed. If the DNA repair of these breaks is delayed by UVC or ara-C treatment this results in a higher probability of exchange-complex formation. In contrast, interactions between breaks in different tracks originate from long-lived DNA breaks and the probability for complex formation from these breaks is not markedly affected by UVC or ara-C.  相似文献   


6.
Previously reported detection of melphalan-DNA adducts by immunofluorescent staining indicated considerable intercell variation in fluorescence levels. Investigations were undertaken to determine whether this variation reflected actual intercell differences in adduct levels. Melphalan-treated CCRF-CEM leukaemia cells were analysed by the trapped-in-agarose DNA immunostaining (TARDIS) method using fluorescein immunofluorescence and Hoechst dye-DNA fluorescence. Increasing the time of DNA denaturation in alkali affected the staining intensity, in agreement with known adduct properties, but failed to reduce intercell heterogeneity. To test the hypothesis that heterogeneity resulted from variation in levels of DNA strand breaks, drug-treated cells were exposed to ionising radiation. An increase in level and reduction in heterogeneity of immunofluorescence were observed, optimal at 10 Gy. When samples were irradiated after lysis, 1 Gy was optimal. At the optimal doses, irradiation before or after lysis resulted in similar levels of DNA strand breaks. Our conclusions are as follows: (a) There was no major intercell variation in the number of adducts other than from variation in DNA content. (b) Detection of melphalan, and possibly other adducts, by immunofluorescence can be markedly influenced by the level of strand breaks present in the DNA. (c) Samples analysed for melphalan adducts by immunofluorescence should be irradiated to minimise errors due to this factor.  相似文献   

7.
The level of DNA damage and cytochrome c content in human lymphocytes in the dynamics of apoptosis induced by UV light (240?C390 nm) at doses of 151, 1510 and 3020 J/m2 is studied. DNA fragmentation is revealed in 20 h after UV irradiation of lymphocytes at doses mentioned above. It is shown that DNA damages (single strand breaks) appear immediately after UV irradiation of lymphocytes at doses of 1510 and 3020 J/m2 (comets of C1 type) and reach their maximum 6 h after cell modification (comets of C2 and C3 types). It is concluded that p53-dependent and receptor caspase pathways are involved in apoptosis development in the human lymphocytes, modified after UV irradiation.  相似文献   

8.
Autoradiographic studies have revealed that stimulation of rabbit spleen lymphocytes by various ConA doses involves two subpopulations responding successively when ConA concentration rises from 0.5 to 5 μg/ml. Equilibrium density sedimentation analysis of DNA replicated in the presence of BUdR is performed after stimulation by these different ConA concentrations. It is shown that at optimal doses to which each of these subpopulations responds, profiles of sedimentation correspond to a normal replication followed by cellular division and a second round of replication. After stimulation by minimal doses, sedimentation profiles indicate a discontinuous process of replication in which initiating events are numerous, but elongations partially blocked. This pattern suggests that the number of stimuli necessary to produce elongations is higher than that necessary to initiate replication. Comparison with effects produced by drugs like FUdR or HU on replication in continuous cultures suggests also that DNA synthesis in lymphocytes cultures could be regulated by a precise balance between stimulating and inhibiting factors. Finally equilibrium density analysis supports the autoradiographic finding that the duration of the S phase varies with the doses of ConA used. Different problems concerning replication in lymphocytes are discussed.  相似文献   

9.
Etoposide (VP-16)-induced DNA strand breaks and repair and apoptosis of unstimulated human lymphocytes have been studied using DNA comet assay, electrophoresis of low-molecular-weight DNA extracts, and fluorescence microscopy. Incubation of unstimulated human lymphocytes with VP-16 (50-200 microg/ml) for 3 or 24 h induced apoptosis. This conclusion is supported by results of morphological studies, evaluation of the proportion of hypodiploidy and internucleosomal degradation of DNA in lymphocytes. Etoposide-induced formation of DNA strand breaks preceded the appearance of these conventional apoptotic manifestations. The number of single-strand breaks depended on VP-16 concentration, and 2-3 h after its removal from the incubation medium they were repaired. The hydroxyl group at the C-4; position of the etoposide dimethoxyphenol ring may be responsible for the formation of single-strand breaks. Double-strand breaks were unrepaired 20 h after the change of the incubation medium. The number of double-strand breaks and a proportion of apoptotic cells did not exhibit any dependence on VP-16 concentration and/or duration of cell exposure to this agent. We suggest that the cytotoxic effect of VP-16 on unstimulated lymphocytes is mediated by a topoisomerase II isoform, topoisomerase II-beta, which is localized in the nucleolus and is not related to the cell cycle.  相似文献   

10.
The sensitivity of various methods suitable for biomonitoring the exposure to genotoxicants was compared in an animal model. The results were related to the presence of genotoxic effects in the target organ. Groups of male Wistar rats were given one oral dose of 0, 0.1, 10 or 200 mg 2-acetylaminofluorene (2-AAF)/5 ml dimethyl sulphoxide/kg body weight. Peripheral blood cells, excreta, liver and spleen were collected at different time intervals after dosing. Mutagenicity in urine and extracts of faeces was determined using the Ames test with Salmonella typhimurium TA98 with and without S9 and with and without beta-glucuronidase. Genotoxic effects were studied by measuring DNA-adduct formation in lymphocytes, liver and spleen, and sister-chromatid exchanges (SCEs) in lymphocytes. DNA adducts were measured with immunochemical techniques and postlabelling methods. Mutagenicity in urine and faeces, collected during the first 24 h after treatment, was detected at 2-AAF doses of 1 mg/kg b.w. and higher. At these doses DNA adducts also became apparent in the liver, the main target organ for tumour induction by 2-AAF. The adduct detected appeared to be the N-(deoxyguanosin-8-yl)-2-AAF adduct. There was no evidence of the presence of any other types of DNA adducts. At doses of 1 and 10 mg/kg b.w. no mutagenicity was detected in excreta collected during the second and third day after dosing. The DNA-adduct level in liver cells of the 1 mg/kg b.w. group was maximal 24 h after dosing. At 200 mg/kg b.w. a delay in excretion of mutagenicity with urine and faeces was seen and at 10 and 200 mg/kg b.w. the amount of DNA adducts continued to increase with time after dosing. At 24 and 48 h after treatment with 10 mg, the adduct levels were of the same order of magnitude as those found after the 20-fold higher dose. This points to overloading of the metabolizing system which in combination with the enterohepatic circulation, may lead to an increased retention of 2-AAF in the body. A slightly increased incidence of SCEs of doubtful significance was seen in lymphocytes, but only at the very high dose of 200 mg/kg b.w. No DNA adducts could be detected in blood lymphocytes or spleen cells at any of the dose levels applied, either with the immunochemical or with the postlabelling method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

12.
An increase of resistance to radiation damage of human lymphocytes previously exposed to low doses of ionizing radiation from incorporated tritiated thymidine was observed by G. Olivieri et al. in 1984. The phenomenon was named adaptive response and its occurrence was reported by others for many animal and plant cells. In this research we studied the adaptive response of spleen colony formation at different time after previous irradiation of mice with low doses of 60Co gamma rays. Our results suggest that the pretreatments protect spleen colony-formatting units (CFU-S) from the second damaging radiation dose of 1.5 Gy during long time (as many as one month).  相似文献   

13.
Visual quantification of DNA double-strand breaks in bacteria.   总被引:2,自引:0,他引:2  
In this paper, we describe a method for the visualization of double-strand breaks in a single electrostretched Escherichia coli DNA molecule. We also provide evidence that electrostretched or migrated DNA under neutral microgel electrophoresis conditions is made up of individual chromosomes. Using the neutral microgel electrophoresis technique, DNA migration (stretching) was measured and the number of DNA double-strand breaks were counted following exposure of E. coli cells to 0, 12.5, 25, 50, or 100 rad of X-rays. The use of an intense fluorescent dye, YOYO and custom-made slides have helped us in visualizing individual bacterial DNA molecules. Bacterial DNA appears similar in structure compared to electrostretched DNA from human lymphocytes. We were able to detect changes in DNA migration (stretching) induced by an X-ray dose as low as 12.5 rad and an increase in the number of DNA breaks induced by a dose as low as 25 rad. The extent of DNA migration and number of breaks were directly correlated to X-ray dosage.  相似文献   

14.
P M?ller  S Loft  C Lundby  N V Olsen 《FASEB journal》2001,15(7):1181-1186
The present study investigated the effect of a single bout of exhaustive exercise on the generation of DNA strand breaks and oxidative DNA damage under normal conditions and at high-altitude hypoxia (4559 meters for 3 days). Twelve healthy subjects performed a maximal bicycle exercise test; lymphocytes were isolated for analysis of DNA strand breaks and oxidatively altered nucleotides, detected by endonuclease III and formamidipyridine glycosylase (FPG) enzymes. Urine was collected for 24 h periods for analysis of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), a marker of oxidative DNA damage. Urinary excretion of 8-oxodG increased during the first day in altitude hypoxia, and there were more endonuclease III-sensitive sites on day 3 at high altitude. The subjects had more DNA strand breaks in altitude hypoxia than at sea level. The level of DNA strand breaks further increased immediately after exercise in altitude hypoxia. Exercise-induced generation of DNA strand breaks was not seen at sea level. In both environments, the level of FPG and endonuclease III-sensitive sites remained unchanged immediately after exercise. DNA strand breaks and oxidative DNA damage are probably produced by reactive oxygen species, generated by leakage of the mitochondrial respiration or during a hypoxia-induced inflammation. Furthermore, the presence of DNA strand breaks may play an important role in maintaining hypoxia-induced inflammation processes. Hypoxia seems to deplete the antioxidant system of its capacity to withstand oxidative stress produced by exhaustive exercise.  相似文献   

15.
Five recently established cell lines of human carcinoma of the cervix of varying radiosensitivity have been used to determine whether the induction or rejoining of DNA double-strand breaks (dsb) shows any correlation with radiosensitivity or radiation recovery capacity. Double-strand DNA breaks have been measured using neutral filter elution at pH 9.6. The number of breaks induced immediately after irradiation with doses of 10 to 40 Gy 60Co gamma rays appeared to show some correlation with radiosensitivity particularly after 10 Gy; the two more radiosensitive lines incurred more breaks than the more radioresistant lines. In addition, the shape of the induction curve with dose was linear for the two sensitive lines but curvilinear for the resistant lines. Despite the dose scales being different, this mirrored their respective cell survival curve shapes. After 30 or 50 Gy irradiation, rejoining of breaks appeared to be rapid and almost complete within 60 min at 37 degrees C for the three resistant lines. However, for the sensitive lines, one line (HX160c) in particular exhibited a reduced rate of dsb rejoining. In addition, a residual level of dsb was present in this line even after allowing rejoining for 3 h. While induction and rejoining of DNA dsb therefore appears to be a factor in determining radiosensitivity, at doses relevant to cellular survival (up to 10 Gy), the greater induction of DNA dsb in radiosensitive lines may play a significant role in determining the cellular response to ionizing radiation.  相似文献   

16.
This study investigated whether a 21.1 km (half-marathon) or a 42.195 km (marathon) run modulates DNA damage, antioxidant capacity in lymphocytes and plasma, and the immune system in healthy hobby runners. Ten and 12 volunteers who completed the Baden-Marathon race in Karlsruhe with a running distance of 21.1 km and 41.195 km, respectively, were assessed 10 days before and immediately after the finish. There was no increase in the levels of endogenous DNA strand breaks immediately after half-marathon or marathon races. A statistically significant increase in the levels of oxidative DNA damage in lymphocytes was found using endonuclease III but not formamidopyrimidine glycolase (Fpg). The resistance of DNA to oxidative damage induced by hydrogen peroxide in isolated lymphocytes was significantly decreased after both races. The levels of plasma antioxidants such as alpha-tocopherol, beta-carotene and lycopene were close to, or higher than, those considered optimal for reducing the risk of cardiovascular diseases and there were no significant changes after the races in antioxidant capacity of LDL (lag-time test) or plasma in ORAC, TEAC or paraoxonase assays. The number and percentage of granulocytes and monocytes able to generate oxidative burst were significantly increased after both races, but the lytic activity of NK cells was significantly increased at the end of the half-marathon; no effect was observed in the marathon runners. Thus, oxidative DNA damage in lymphocytes, decreased the antioxidant capacity to protect lymphocytes against DNA strand breaks and increased the formation of reactive species by phagocytes in well-nourished hobby runners indicating moderate oxidative damage during such high-intensity exercise.  相似文献   

17.
Although a number of chemicals can alter DNA repair function, little is known about the effect of chronic, low dose exposure to environmental agents on DNA repair capacity. Lymphocytes provide a potential target population to study the effects of chronic exposures to low doses of toxic chemicals since they are an easily obtainable cell population. Prior to investigating the repair capacity of chemically exposed lymphocytes, the repair by chemically naive lymphocytes has been characterized. In the present study, the DNA repair capacity of isolated rat lymphocytes was characterized. The capacity of these cells to repair single-strand DNA breaks (SSB) was determined after in vitro treatments with X-rays. The effect of in vitro exposure to 3-aminobenzamide (3-AB) on DNA repair capacity was also assessed. The levels of induced SSB and their repair were determined using the alkaline elution technique. Splenic lymphocytes were isolated and placed in culture medium 18 h prior to assessment of repair capacity, but were not stimulated with mitogens. A dose-dependent increase in SSB was observed following exposure of lymphocytes to 300 or 600 rad. The rate of SSB repair was analyzed after a dose of 400 rad. Approximately 80% of the DNA strand break repair was completed within 60 min. The half-time for repair of these lesions by lymphocytes was determined to be 21.3 min. Exposure to 3-AB resulted in a decrease in the rate of repair of the X-ray-induced strand breakage. Although no SSB were detected at the end of a 1-h 3-AB treatment of non-irradiated cells, significant accumulation of SSB was observed after a 2-h treatment. The characterization of DNA repair in rat lymphocytes following in vitro exposure to X-rays will allow us to investigate the effects of chronic, in vivo toxicant exposure on the capacity of isolated lymphocytes to repair DNA damage produced by X-rays.  相似文献   

18.
DNA breaks and their repair efficiency were analyzed in irradiated in vitro lymphocytes (at doses 1 Gy, gamma-radiation of 60Co, dose rate 1 Gy/min) isolated from peripheral blood of 41 untreated patients with breast cancer and 25 healthy donors using the DNA comet assay under non-denaturing conditions (mainly double-strand DNA breaks (DSB), as well as apoptotic cell death using the DNA halo assay. To estimate the expression of bystander effect, the cells were incubated in a culture medium obtained from lymphocytes irradiated in vitro at doses 1 Gy. The average DSB level in blood lymphocytes of breast cancer patients was shown to be significantly higher (p < 0.05) compared with that in control donors. In general, the following effects were observed in irradiated in vitro lymphocytes of cancer patients: (1) increased sensitivity to y-radiation-induced DNA DSBs compared with lymphocytes from healthy donors, (2) reduced repair efficiency of these damages. Incubation of irradiated blood lymphocytes in a medium from irradiated cells led to an increased relative number of DNA DSBs and an elevated fraction of cells dying through apoptotic pathway both in blood lymphocytes from cancer patients and control donors. However, these non-targeted effects were more expressed for the blood lymphocytes of breast cancer patients.  相似文献   

19.
The ability to detect DNA damage using the alkaline comet assay depends on pH, lysis time and temperature during lysis. However, it is not known whether different lysis conditions identify different types of DNA damage or simply measure the same damage with different efficiencies. Results support the latter interpretation for radiation, but not for the alkylating agent MNNG. For X-ray-induced damage, cells showed the same amount of damage, regardless of lysis pH (12.3 compared to >13). However, increasing the duration of lysis at 5 degrees C from 1 h to more than 6 h increased the amount of DNA damage detected by almost twofold. Another twofold increase in apparent damage was observed by conducting lysis at room temperature (22 degrees C) for 6 h, but at the expense of a higher background level of DNA damage. The oxygen enhancement ratio and the rate of rejoining of single-strand breaks after irradiation were similar regardless of pH and lysis time, consistent with more efficient detection of strand breaks rather than detection of damage to the DNA bases. Conversely, after MNNG treatment, DNA damage was dependent on both lysis time and pH. With the higher-pH lysis, there was a reduction in the ratio of oxidative base damage to strand breaks as revealed using treatment with endonuclease III and formamidopyrimidine glycosylase. Therefore, our current results support the hypothesis that the increased sensitivity of longer lysis at higher pH for detecting radiation-induced DNA damage is due primarily to an increase in efficiency for detecting strand breaks, probably by allowing more time for DNA unwinding and diffusion before electrophoresis.  相似文献   

20.
It is established that UV-light (240-390 nm) in doses of 151, 1510 and 3020 J/m2 and reactive oxygen species and singlet oxygen induce DNA fragmentation lymphocytes cells of the human 20 h after influence. Using a method of DNA-comets it is revealed that DNA damages (single strand breaks) are found out right after UV-irradiations of lymphocytes in doses of 1510 and 3020 J/m2 and additions hydrogen peroxide in concentration of 10-6 mol/l (a comet of type C1) and reach a maximum through 6 h after influence on of cells UV-light and ROS (comets of types C2 and C3). Assumption about the leading part of a p53-dependent way in realization apoptosis human lymphocytes in the conditions of influence of UV-light and reactive oxygen species is put forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号