首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

We studied the inhibition of mitochondrial malate dehydrogenase (mMDH) by the nucleotides cAMP, AMP, ADP, ATP. The experimental kinetic studies showed that the nucleotides were competitive inhibitors and that cAMP was probably the most potent inhibitor. To explain these observations, we used molecular modeling to determine the location, orientation, and relative binding energy of the nucleotides to mMDH. The order of the calculated binding energies, from lowest (most favorable) to highest, was cAMP, AMP, ADP, and ATP, which corresponded somewhat to the order of the experimentally determined inhibition constants.  相似文献   

2.
The effect of nucleotides: AMP, cAMP, ADP, ATP, GDP and GTP, on glutamate dehydrogenase (GDH) purified from the mealworm fat body was studied. Guanine nucleotides and ATP inhibited the enzyme strongly in both directions. GDH was partially protected from the inhibition by the addition of ADP to an assay medium. AMP and cAMP activated the enzyme slightly. The concerted effects of ADP and ATP indicate the importance of adenylate energy charge in the regulation of fat body GDH. It is suggested that GDH may play amphibolic role in the fat body and that the direction of GDH catalysed reaction is under strong influence of nucleotides. The enzyme may synthesize glutamate at high energy charge, but when the energy reserves are low, it oxidizes glutamate.  相似文献   

3.
Regulation by cytosolic nucleotides of Ca2+- and ATP-sensitive nonselective cation channels (CA-NSCs) in rat brain capillary endothelial cells was studied in excised inside-out patches. Open probability (Po) was suppressed by cytosolic nucleotides with apparent KI values of 17, 9, and 2 microM for ATP, ADP, and AMP, as a consequence of high-affinity inhibition of channel opening rate and low-affinity stimulation of closing rate. Cytosolic [Ca2+] and voltage affected inhibition of Po, but not of opening rate, by ATP, suggesting that the conformation of the nucleotide binding site is influenced only by the state of the channel gate, not by that of the Ca2+ and voltage sensors. ATP inhibition was unaltered by channel rundown. Nucleotide structure affected inhibitory potency that was little sensitive to base substitutions, but was greatly diminished by 3'-5' cyclization, removal of all phosphates, or complete omission of the base. In contrast, decavanadate potently (K1/2 = 90 nM) and robustly stimulated Po, and functionally competed with inhibitory nucleotides. From kinetic analyses we conclude that (a) ATP, ADP, and AMP bind to a common site; (b) inhibition by nucleotides occurs through simple reversible binding, as a consequence of tighter binding to the closed-channel relative to the open-channel conformation; (c) the conformation of the nucleotide binding site is not directly modulated by Ca2+ and voltage; (d) the differences in inhibitory potency of ATP, ADP, and AMP reflect their different affinities for the closed channel; and (e) though decavanadate is the only example found to date of a compound that stimulates Po with high affinity even in the presence of millimolar nucleotides, apparently by competing for the nucleotide binding site, a comparable mechanism might allow CA-NSC channels to open in living cells despite physiological levels of nucleotides. Decavanadate now provides a valuable tool for studying native CA-NSC channels and for screening cloned channels.  相似文献   

4.
Calcium-activated nonselective cation channels (NSC(Ca)) in brown adipocytes are inhibited by several nucleotides acting on the cytosolic side of the membrane. We used excised inside-out patches from rat brown adipocytes to identify important nucleotide structures for NSC-channel inhibition. We found that 100 microM 5'-AMP inhibited NSC-channel activity more than did ATP or ADP. Adenosine was a weak inhibitor, whereas adenine and ribose-5-phosphate had no effect. The channel activity was effectively blocked by 10 microM AMP, but it was unaffected by 10 microM cAMP, CMP, GMP, IMP, TMP or UMP. Dose-response studies yielded IC(50)-values of 4 microM for AMP and 32 microM for cAMP. dAMP was as effective as AMP, but all 5'-phosphate group modifications on AMP dramatically lowered the inhibitory effect. 10 microM of the AMP precursor adenylosuccinate weakly inhibited the channel activity. An increase in AMP concentration from 1 to 10 microM shifted the EC(50) for Ca(2+) activation almost 1 order of magnitude; a Schild plot analysis yielded a K(B) value of 0.3 microM for AMP. We conclude that AMP is the most efficacious endogenous nucleotide inhibitor of the brown adipocyte nonselective cation channel (NSC(Ca/AMP)) yet identified and that there is functional competition between Ca(2+) and AMP. The brown adipocyte NSC(Ca/AMP) thus appears to be functionally different from the NSC(Ca,PKA) in the exocrine pancreas and the NSC-(Ca,cAMP) in the endocrine pancreas, but similar to the NSC(Ca/AMP) in the endocrine pancreas.  相似文献   

5.
Olfactory marker protein (OMP) is a genetic signature for mature olfactory receptor neurons (ORNs). Recently, it has been proposed that OMP directly captures odour-induced cAMP to swiftly terminate the olfactory signal transduction to maintain neuronal sensitivity. In the present study, we show that OMP can also interact with other adenosine nucleotides as ATP, ADP and AMP with different affinities. We performed bioluminescent resonant energy transfer (BRET) assay to measure the binding actions of the adenosine nucleotide derivatives in competition to cAMP. Amongst all, ATP showed the bell-shape affinity to OMP in the presence of cAMP; ADP and AMP showed fewer affinities to OMP than ATP. In the absence of cAMP analogues, ATP alone bound to OMP in a dose dependent manner with a lower affinity than to cAMP. Thus, OMP possessed different affinities to ATP in the presence or absence of cAMP. OMP may interact differentially with ATP and cAMP depending on its supply and demand along the cAMP-associated signalling in the limited spaces of cilia of ORNs.  相似文献   

6.
Regulation of human neutrophil functions by adenine nucleotides   总被引:3,自引:0,他引:3  
Previous work has shown that platelet-derived adenine nucleotides modulate neutrophil superoxide anion (O2-) generation. Additional studies were undertaken to characterize the effects of authentic adenosine (ADO) and its nucleotide derivatives on the inflammatory functions of human neutrophils. Stimulus-specific inhibition of neutrophil O2- generation by ADO in response to FMLP was verified. In addition, the ability of ATP, ADP, and AMP to limit neutrophil O2- generation induced by FMLP (0.2 to 0.5 microM) was demonstrated. The concentration producing 50% inhibition for nucleotide inhibition of neutrophil O2- generation was in the rank order of ADO (0.1 microM) less than AMP (0.5 microM) less than ADP less than or equal to ATP (5 microM). Guanine and inosine nucleotides (0.01 to 100 microM) did not inhibit FMLP-stimulated neutrophil O2- generation. Neutrophil degranulation in response to FMLP was only modestly inhibited by adenine nucleotides and ADO. Adenosine and ADP failed to affect chemotaxis of neutrophils stimulated with FMLP. The inability of non-metabolizable analogs to mimic the inhibitory effects of authentic ATP or ADP on the neutrophil O2- response suggested that metabolism of added nucleotides is necessary for their effectiveness. Both TLC and HPLC confirmed that ATP and ADP were converted to AMP and ADO after their incubation with unstimulated or FMLP-activated neutrophils. The addition of adenosine deaminase to neutrophil reaction mixtures in which conversion of added nucleotides was apparent removed detectable ADO but failed to completely abrogate the inhibition of neutrophil O2- generation by accumulated AMP. The kinetics of inhibition of FMLP-induced neutrophil O2- generation by ATP and ADP also indicated that conversion of these nucleotides to ADO and/or AMP may be essential for their ability to reduce neutrophil responses.  相似文献   

7.
The interactions of aminoglycoside, 3',4'-dideoxykanamycin B(DKB) with ATP and its related compounds were investigated. ATP, ADP, cyclic AMP and FAD bound to the DKB-conjugated Sepharose 4B column. The binding of DKB to ATP was also confirmed by equilibrium gel filtration. In the acidic pH region, the fluorescence of nucleotides was quenched by DKB. The Stern-Volmer plots showed that the molar ratios of the complexes were 1:1. The apparent stability constant was dependent on the number of the phosphate groups of nucleotides and was in the order of ATP greater than ADP greater than AMP.  相似文献   

8.
Stimulation of P2-purinergic receptors by ATP resulted in activation of phosphorylase, which was associated with marked production of inositol trisphosphate (Ins-P3), in rat hepatocytes. ATP also inhibited forskolin-induced accumulation of cAMP in the presence of a phosphodiesterase inhibitor. On the contrary, adenosine or AMP never inhibited the cAMP accumulation, but increased hepatocyte cAMP; the stimulation was antagonized by a methylxanthine. Thus, P1-purinergic receptors are linked to adenylate cyclase in a stimulatory fashion in hepatocytes. Various kinds of purine nucleotides stimulating P2-receptors can be divided into two groups on the basis of their relative abilities to stimulate Ins-P3 production and to inhibit cAMP accumulation; the first group including adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, 5-adenylyl imidodiphosphate, GTP, and guanosine 5'-O-(3-thiotriphosphate) has an efficacy similar to that of ATP, and the second group of nucleotides including alpha, beta-methyleneadenosine 5'-triphosphate, beta, gamma-methyleneadenosine 5'-triphosphate (App(CH)2)p), and GDP exerts considerable inhibitory effects on cAMP accumulation, but only slight effects on inositol lipid metabolism. Treatment of hepatocytes with islet-activating protein, pertussis toxin, blocked the nucleotide-induced inhibition of cAMP accumulation, but exerted only a small effect on Ins-P3 production. In membranes prepared from hepatocytes, forskolin-stimulated adenylate cyclase was inhibited by GTP. This GTP-induced inhibition of the enzyme was susceptible to islet-activating protein and dependent on the concentration of ATP (or its derivatives, ATP gamma S or App(CH2)p). It is concluded that there are two types of P2-purinergic receptors: one is linked to adenylate cyclase via an inhibitory guanine nucleotide regulatory protein (Gi) and the other is linked to phospholipase C.  相似文献   

9.
BackgroundRegulatory cystathionine β-synthase (CBS) domains are ubiquitous in proteins, yet their mechanism of regulation remains largely obscure. Inorganic pyrophosphatase which contains regulatory CBS domains as internal inhibitors (CBS-PPase) is activated by ATP and inhibited by AMP and ADP; nucleotide binding to CBS domains and substrate binding to catalytic domains demonstrate positive co-operativity.Methods: Here, we explore the ability of an AMP analogue (cAMP) and four compounds that mimic the constituent parts of the AMP molecule (adenine, adenosine, phosphate, and fructose-1-phosphate) to bind and alter the activity of CBS-PPase from the bacterium Desulfitobacterium hafniense.ResultsAdenine, adenosine and cAMP activated CBS-PPase several-fold whereas fructose-1-phosphate inhibited it. Adenine and adenosine binding to dimeric CBS-PPase exhibited high positive co-operativity and markedly increased substrate binding co-operativity. Phosphate bound to CBS-PPase competitively with respect to a fluorescent AMP analogue.ConclusionsProtein interactions with the adenine moiety of AMP induce partial release of the internal inhibition and determine nucleotide-binding co-operativity, whereas interactions with the phosphate group potentiate the internal inhibition and decrease active-site co-operativity. The ribose moiety appears to enhance the activation effect of adenine and suppress its contribution to both types of co-operativity.General significanceOur findings demonstrate for the first time that regulation of a CBS-protein (inhibition or activation) is determined by a balance of its interactions with different chemical groups of the nucleotide and can be reversed by their modification. Differential regulation by nucleotides is not uncommon among CBS-proteins, and our findings may thus have a wider significance.  相似文献   

10.
NK cell proliferation is suppressed in some patients with cancer by unknown mechanisms. Because purine metabolites released into the extracellular space during cell lysis may affect cell function, we hypothesized that these metabolites could serve as feedback regulators of NK cell proliferation. Sorted NK (CD56+/CD3-) cells were incubated with IL-2 (1000 U/ml) in a 4-day thymidine uptake assay with or without 10-10,000 microM of nucleotides. Adenine nucleotides inhibited NK cell proliferation, with ATP = ADP > 5'-adenylylimidodiphosphate > AMP = adenosine; ADP-ribose and nicotinamide adenine dinucleotide, but not nicotinamide or UTP, caused a dose-dependent suppression of thymidine uptake. A total of 100 microM ATP, a concentration that induced a maximal (80%) inhibition of thymidine uptake, did not inhibit cytotoxic activity against K562 targets. Because NK cells retained the ability to lyse K562 targets 4 days after exposure to 500 microM ATP or 1000 microM adenosine, inhibition of thymidine uptake was not due to cell death. Incubation of NK cells with dibutyryl cAMP and forskolin also suppressed thymidine uptake. Cholera toxin and pertussis toxin suppressed NK cell proliferation. Pertussis toxin did not block the adenine nucleotide effects. Further, ATP, but not adenosine or other nucleotides, markedly increased intracellular cAMP in a dose-dependent manner. The ATP-induced increase in cAMP was specific to cytolytic cells, because CD19+ B cells and CD4+ T cells did not increase their intracellular cAMP. These studies demonstrate that NK proliferation is regulated through purine receptors by adenine nucleotides, which may play a role in decreased NK cell activity. The response to adenine nucleotides is lineage-specific.  相似文献   

11.
Landoulsi A  Kohiyama M 《Biochimie》1999,81(8-9):827-834
The purified DnaA protein has a high affinity for cyclic AMP (cAMP). Using equilibrium dialysis, we determined the K(A) value for cAMP as 0.819 muM(-1). The number of cAMP binding sites per DnaA protein molecule was calculated to be 1.04. This binding was quite specific for cAMP. ATP was also bound by DnaA protein and inhibited cAMP binding. This inhibition was non-competitive in nature with an inhibition constant (K(i)) of about 8.25 muM. However, in vivo we have found not only that the DnaA protein level is reduced in a cyclase deletion mutant strain, Delta++ cya, but also that DnaA protein is not degraded. The Delta cya mutants of E. coli are unable to continue DNA synthesis in the absence of de novo protein synthesis and the initiation of DNA replication in these mutants takes place from oriC.  相似文献   

12.
Concentrations of ATP, ADP, AMP, cAMP as well as pyruvate and glucose-6-phosphate were measured in B. lastocladiella emersonii cells developing via RS morphogenetic pathway. They varied significantly in the course of development (1.3-14.8 mumole/g dry weight for the sum of ATP+ADP+AMP; 0.012-5.3 nmole for cAMP; 0.47-1.9 mumole for pyruvate; 0.36-4.78 mumole for glucose-6-phosphate). At the same time the adenylate energy charge remained essentially unchanged (about 0.8) from the middle of exponential growth till the end of the stationary phase. At the late stages of RS-sporangia formation the concentration of all the above compounds decreased by about 10 times, and the adenylate energy charge only by 30%. Positive correlation between the levels of ATP and cAMP in RS cells was demonstrated. The concentration of adenylic nucleotides and cAMP showed the most noticable changes at the end of exponential growth; transition of the point of no return was not accompanied by significant changes in the pools of adenylic system, cAMP or energy charge.  相似文献   

13.
Summary The control by nucleotides of the Ca2+-activated channel which regulates the nonspecific permeability of the mitochondrial inner membrane has been investigated quantitatively. The cooperative binding of two molecules of ADP to the internal (matrix) side of the channel causes a mixed-type inhibition of channel activity. ATP, AMP, cAMP and GDP are all ineffective. NADH shows a pattern of inhibition similar to that of ADP, though the apparentK I is higher by a factor of 200. NADPH relieves the inhibition by NADH. NAD+ also inhibits, but its affinity is a factor of 10 less than that of NADH. When ADP and NADH are added together, they act synergistically to inhibit the Ca2+-activated channel. It is concluded that the concept of the modification of enzyme activity by the allosteric binding of nucleotides, which is well established for soluble enzyme systems, also has application to the regulation of channels that control membrane permeability.  相似文献   

14.
Nishi H  Hori S  Niitsu A  Kawamura M 《Life sciences》2004,74(9):1181-1190
The study was aimed to investigate the existence of at least two kinds of P2Y receptors linked to steroidogenesis in bovine adrenocortical fasciculata cells (BAFCs). Extracellular nucleotides facilitated steroidogenesis in BAFCs. The potency order was UTP > adenosine 5'-(gamma-thio) triphosphate (ATPgammaS) > ATP > 2-methylthio ATP (2MeSATP) > adenosine 5'-(beta-thio) diphosphate (ADPbetaS) > alpha,beta-methylene ATP (alpha,beta-me-ATP), beta,gamma-methylene ATP (beta,gamma -me-ATP). ATPgammaS (10-100 microM) remarkably stimulated both total inositol phosphates (IPs) production and cyclic AMP (cAMP) accumulation. Competitive displacement experiments by using [35S]ATPgammaS as a radioactive ligand in BAFCs showed that the potency under these unlabelled ligands was ATPgammaS > ATP > ADPbetaS > 2MeSATP > UTP > alpha,beta-me-ATP, beta,gamma-me-ATP. These suggest that two different binding sites of [35S]ATPgammaS, namely P2Y receptors, exist in BAFCs, and that these receptors are linked to steroidogenesis via distinct second messenger systems in the cells.  相似文献   

15.
The activity of glutamine synthetase isolated from the germinated seedlings of Phaseolus aureus was regulated by feedback inhibition by alanine, glycine, histidine, AMP, and ADP. When glutamate was the varied substrate, alanine, histidine, and glycine were partial noncompetitive, competitive, and mixed-type inhibitors, respectively. The type of inhibition by these amino acids was confirmed by fractional inhibition analysis. The adenine nucleotides, AMP and ADP, completely inhibited the enzyme activity and were competitive with respect to ATP. Multiple inhibition analyses revealed the presence of separate and nonexclusive binding sites for the amino acids and mutually exclusive sites for adenine nucleotides. Cumulative inhibition was observed with these end products.  相似文献   

16.
We have previously shown that ATP interacts with an intracellular, stereoselective, regulatory site(s) on the human erythrocyte sugar transport system to modify transport function in a hydrolysis-independent manner. This present study examines the nucleotide binding properties of the human erythrocyte sugar transport system. We demonstrate by transport studies in ghosts, by nucleotide binding studies with purified transport protein by measurements of nucleotide inhibition of 8-azidoadenosine 5'-[gamma-32P]triphosphate (azido-ATP) photoincorporation into purified carrier, and by analysis of nucleotide inhibition of carboxyl-terminal peptide antisera binding to purified glucose carrier than the glucose transport protein binds (with increasing order of affinity) AMP, ADP, ATP, 5'-adenylyl imidodiphosphate (AMP-PNP), and 1,N6-ethenoadenosine 5'-triphosphate (EATP) at a single site. The carrier lacks detectable ATPase activity and GTP binding capacity. While AMP and ADP bind to the carrier protein and act as competitive inhibitors of ATP binding, these nucleotides are unable to mimic the ability of ATP, AMP-PNP, and EATP to modify the catalytic properties of the sugar transport system. Limited tryptic digestion of azido-ATP-photolabeled carrier suggests that the region of the glucose transport protein containing the intracellular cytochalasin B binding and extracellular bis(mannose) binding domains [residues 270-456; Holman, G. D., & Rees, W. D. (1987) Biochim. Biophys. Acta 897, 395-405] may also contain the intracellular ATP binding site.  相似文献   

17.
Lymphocyte responses to the galactosyl binding lectins, SBA and PNA, and responses to Con A are suppressed by cAMP analogs and agents that increase intracellular cAMP to a greater extent than are responses to PHA. Adenosine shares with cAMP this selective inhibitory effect. ATP inhibits lymphocyte proliferation via generation of adenosine. This conclusion is based on the findings that (i) β,γ-methylene ATP (β,γ-met ATP) is similar to ATP in its inhibitory effects, whereas α,β-met ATP has little effect on lymphocyte proliferation, (ii) α,β-met ATP reverses both ATP and β,γ-met ATP induced suppression, but does not reverse adenosine-mediated suppression, and (iii) inhibition of adenosine deaminase potentiates ATP and β,γ met ATP-mediated suppression of blastogenesis. The relative potency of various noncyclic adenosine compounds in suppressing mitogen-induced blastogenesis is: 2-chloradenosine > ATP ≥ ADP > AMP > adenosine.  相似文献   

18.
The inhibition of several dehydrogenase enzymes by cis- and trans-Pt(NH3)2Cl2 have been measured in the presence of baker yeast ribonucleic acid (RNA), calf thymus and salmon sperm deoxyribonuclic acid (DNA) and several mononucleotides (AMP and ATP). The binding constants for the interaction of the platinum complexes to the nucleotides have been calculated and a comparison of those values to the previously calculated platinum complex-enzyme binding constants strongly suggest that platinum compounds are more tightly bound to the enzymes. The binding of the platinum complexes to most of the enzymes was decreased in the presence of any nucleotide, yet it was observed that when using rabbit muscle (M4) lactate dehydrogenase the mononucleotides reduced the binding to a lesser degree while the polynucleotides actually enhanced the platinum-enzyme interaction. The implications of these interactions are discussed.  相似文献   

19.
The binding of nucleoside triphosphates to rabbit muscle phosphofructokinase has been determined in 0.05 M phosphate buffers by changes in intrinsic protein fluorescence and by direct binding measurements. These experiments have been performed over a wide range of pH, temperature, and effector concentration. Quenching of protein fluorescence is shown to measure binding of nucleotides to a site which is not the active site but rather a site responsible for inhibition of the kinetic activity. This site is relatively specific for either ATP or MgATP with free ATP binding about 10-fold more tightly than MgATP. A model to describe binding to this site as a function of pH and temperature is proposed. This model assumes that the apparent affinity for ATP is determined by protonation of two ionizable groups (per subunit) and that ATP binds exclusively to protonated enzyme forms. Several ligands which affect the apparent affinity for nucleotide binding at the inhibitory site act by shifting the apparent pK of the ionizable groups. NH4+ and citrate do not influence nucleotide binding to the inhibitory site. At pH 6.9 in 0.05 M phosphate, low concentrations of MgATP or MgGTP enhance the protein fluorescence due to binding at the active site. The fluorescence studies and direct binding studies show that there is one active site and one inhibitory site per subunit. As described elsewhere (Pettigrew, D. W., and Frieden, C. (1978) J. Biol. Chem. 253, 3623-3627), there is a third nucleotide binding site on each subunit which is specific for cAMP, AMP, and ADP.  相似文献   

20.
A normal human diploid fibroblast cell strain, Lederle 130 (Led 130), and its virus-transformed progeny line, transformed Led 130, were subjected to 0.75 and 1.5 mM concentrations of adenosine-5'-monophosphate (AMP), cyclic AMP (cAMP) and dibutyryl cyclic AMP (Bt2cAMP). While cAMP was markedly inhibitory to neoplastic cells at 1.5 mM, Bt2-cAMP was even more effective at this concentration, producing 85% inhibition by 4 days and 91% inhibition by 6 days. Bt2-cAMP was the only nucleotide to reverse morphological transformation effects in the neoplastic fibroblasts. Normal fibroblasts were inhibited in growth rate to a comparable extent by all nucleotides, and were not altered morphologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号