首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fragile X syndrome is one of the most frequent causes of mental retardation. Since the phenotype in this syndrome is quite variable, clinical diagnosis is not easy and molecular laboratory diagnosis is necessary. Usually DNA from blood cells is used in molecular tests to detect the fragile X mutation which is characterized by an unstable expansion of a CGG repeat in the fragile X mental retardation gene (FMR1). In the present study, blood and buccal cells of 53 mentally retarded patients were molecularly analyzed for FMR1 mutation by PCR. Our data revealed that DNA extraction from buccal cells is a useful noninvasive alternative in the screening of the FMR1 mutation among mentally retarded males.  相似文献   

2.
A survey of fragile X syndrome in a sample from Spanish Basque country   总被引:1,自引:0,他引:1  
Fragile X syndrome is the most common inherited form of mental retardation. The syndrome is associated with a CGG repeat expansion in the 5'UTR of the first exon of the FMR1 gene. This gene maps to Xq27.3 and coincides with the cytogenetic fragile site (FRAXA). The present study deals with the prevalence of fragile X syndrome among individuals with mental retardation of unknown cause from institutions and special schools from the Spanish Basque Country. Results of cytogenetic and molecular studies, performed in a group of 134 unrelated individuals (92 males and 42 females) are presented. The cytogenetic marker at Xq27.3 was identified in 12 patients. Other chromosomal abnormalities were found in two cases that this and previous studies confirmed as Angelman and Prader-Willi syndromes. Two males, in whom the cytogenetic marker was identified, were found negative for FRAXA and FRAXE expansion at the molecular level. The present study shows that the frequency of the FRAXA full mutation in individuals of Spanish non-Basque origin is in the range of other Spanish populations. In the sample of Spanish Basque origin we have not found cytogenetic FRAXA site expression, and the CGG repeat size of FMR1 gene is in the normal range. The significance of these results are discussed.  相似文献   

3.
4.
Fragile X syndrome is the most common cause of inherited mental retardation. The incidence has been estimated to be 1 in 1250 males and 1 in 2000 females. Molecular studies have shown that 95% of fragile X syndrome cases are caused by the expansion of a CGG triplet in the FMR1 gene with hypermethylation of the adjacent CpG island. In spite of the high incidence of this syndrome, a female with both FMR1 genes in the expanded form has never been reported. We present here a female from the Canary Islands presenting mental retardation and attention problems. Molecular analysis has revealed that both of her FMR1 genes have the CGG expansion, one with a premutation and the other with a full mutation. We have studied the CGG repeat in the FMR1 gene in 64 members of her family and detected 33 normal individuals, 14 carriers with the premutation (1 male and 13 females), and 18 individuals with full mutations (8 males and 10 females). The index case illustrates that the possibility of both parents being carriers of the fragile X syndrome premutation should be considered in consanguineous families or in small communities. Received: 4 April 1996 / Revised: 3 May 1996  相似文献   

5.
Fragile X syndrome (FXS) is the commonest cause of inherited mental retardation and clinically presents with learning, emotional and behaviour problems. FXS is caused by expansion of cytosine-guanine-guanine (CGG) repeats present in the 5’ untranslated region of the FMR1 gene. The aim of this study was to screen children attending special education institutions in Sri Lanka to estimate the prevalence of CGG repeat expansions. The study population comprised a representative national sample of 850 children (540 males, 310 females) with 5 to 18 years of age from moderate to severe mental retardation of wide ranging aetiology. Screening for CGG repeat expansion was carried out on DNA extracted from buccal cells using 3’ direct triplet primed PCR followed by melting curve analysis. To identify the expanded status of screened positive samples, capillary electrophoresis, methylation specific PCR and Southern hybridization were carried out using venous blood samples. Prevalence of CGG repeat expansions was 2.2%. Further classification of the positive samples into FXS full mutation, pre-mutation and grey zone gave prevalence of 1.3%, 0.8% and 0.1% respectively. All positive cases were male. No females with FXS were detected in our study may have been due to the small sample size.  相似文献   

6.
Mental status of females with an FMR1 gene full mutation.   总被引:4,自引:0,他引:4       下载免费PDF全文
The cloning of the FMR1 gene enables molecular diagnosis in patients and in carriers (male and female) of this X-linked mental retardation disorder. Unlike most X-linked disorders, a considerable proportion of the female carriers of a full mutation of the FMR1 gene is affected. In this study, the intelligence quotients (IQs) were ascertained by the Wechsler Adult Intelligence Scale in 33 adult females with a full mutation, with 28 first-degree adult female relatives (mainly sisters) without a full mutation as controls. Seventy-one percent of the females with a full mutation had IQ scores below 85. In paired analysis, no significant correlation could be detected between the IQs of the females with a full mutation and those of their first-degree female relatives, reflecting a dominant effect of the FMR1 gene full mutation in the mental development of females. Considering females with a full mutation only, we observed a significant relation between the proportion of normal FMR1 alleles on the active X chromosome and IQ. We present a model to explain this relationship.  相似文献   

7.
Individuals with mental disabilities are a heterogeneous group, mainly when we consider the etiology of mental retardation (MR). Recent advances in molecular genetics techniques have enabled us to unveil more about the molecular basis of several genetic syndromes associated with MR. In this study, we surveyed 85 institutionalized individuals with severe MR, 38 males and 47 females, by two molecular techniques, to detect CGG amplifications in the FMR1 gene. No FRAXA mutations were found in the FMR1 gene, reinforcing the low prevalence of Fragile X syndrome among institutionalized individuals with severe MR. We considered the PCR protocol used adequate for screening males with mental retardation of unknown etiology. The use of the Southern blot is still necessary for the decisive diagnosis of the Fragile X syndrome. To exclude chromosomal abnormalities associated with MR as a possible cause of the phenotype in these individuals, G-banded chromosome analysis was performed in all patients and 7.3% of chromosomal aberrations were found. Our results are similar to those reported previously and point to the necessity of expanding the molecular investigation toward other causes of MR, such as subtle chromosomal rearrangements, as suggested recent by a combination of fluorescence in situ hybridization (FISH) and PCR studies.  相似文献   

8.
9.
The fragile X syndrome is an X-linked mental retardation disorder caused by an expanded CGG repeat in the first exon of the fragile X mental retardation (FMR1) gene. Its frequency, X-linked inheritance, and consequences for relatives all prompt for diagnosis of this disorder on a large scale in all affected individuals. A screening for the fragile X syndrome has been conducted in a representative sample of 3,352 individuals in schools and institutes for the mentally retarded in the southwestern Netherlands, by use of a brief physical examination and the DNA test. The attitudes and reactions of (non)consenting parents/guardians were studied by (pre- and posttest) questionnaires. A total of 2,189 individuals (65%) were eligible for testing, since they had no valid diagnosis, cerebral palsy, or a previous test for the FMR1 gene mutation. Seventy percent (1,531/2,189) of the parents/guardians consented to testing. Besides 32 previously diagnosed fragile X patients, 11 new patients (9 males and 2 females) were diagnosed. Scoring of physical features was effective in preselection, especially for males (sensitivity .91 and specificity .92). Major motives to participate in the screening were the wish to obtain a diagnosis (82%), the hereditary implications (80%), and the support of research into mental retardation (81%). Thirty-four percent of the parents/guardians will seek additional diagnostic workup after exclusion of the fragile X syndrome. The prevalence of the fragile X syndrome was estimated at 1/ 6,045 for males (95% confidence interval 1/9,981-1/ 3,851). On the basis of the actual number of diagnosed cases in the Netherlands, it is estimated that >50% of the fragile X cases are undiagnosed at present.  相似文献   

10.
The Fragile X syndrome is the most common cause of inherited mental retardation. For a female premutation carrier, the risk of having a child with a full mutation is positively correlated with the size of the premutation. The current study was performed to evaluate the risk of premutation expansion in the offspring of average-risk carriers detected by general prenatal screening. Over a 4-year period, 9,660 women underwent DNA screening for FMR1 mutation/premutation at the Tel Aviv Sourasky Medical Center. A premutation was defined as a CGG repeat number >50 in the 5' untranslated region (UTR) of exon 1 in the FMR1 gene. The study included only individuals with no family history of X-linked mental retardation or known FMR1 mutations. A premutation was found in 85 women (1 in 114), 68 of whom consented to have prenatal diagnoses in 74 pregnancies. The abnormal allele was transmitted to the offspring in 44 pregnancies. Of these, no change in allele size was noted in 35 pregnancies (79.6%), and expansion within premutation range was evident in 4 pregnancies (9%). In 5 pregnancies (11.4%), expansion to the full mutation was noted. This occurred only in carriers having more than 90 repeats. We conclude that the likelihood of Fragile X premutation expansion to full mutation is significantly lower in individuals ascertained by general prenatal carrier testing than in those from known Fragile X families.  相似文献   

11.
12.
Fragile-X syndrome is caused by an unstable CGG trinucleotide repeat in the FMR1 gene at Xq27. Intermediate alleles (51-200 repeats) can undergo expansion to the full mutation on transmission from mother to offspring. To evaluate the effectiveness of a fragile-X carrier-screening program, we tested 14,334 Israeli women of child-bearing age for fragile-X carrier status between 1992 and 2000. These women were either preconceptional or pregnant and had no family history of mental retardation. All those found to be carriers of premutation or full-mutation alleles were offered genetic counseling and also prenatal diagnosis, if applicable. We identified 207 carriers of an allele with >50 repeats, representing a prevalence of 1:69. There were 127 carriers with >54 repeats, representing a prevalence of 1:113. Three asymptomatic women carried the fully mutated allele. Among the premutation and full-mutation carriers, 177 prenatal diagnoses were performed. Expansion occurred in 30 fetuses, 5 of which had an expansion to the full mutation. On the basis of these results, the expected number of avoided patients born to women identified as carriers, the cost of the test in this study (U.S. $100), and the cost of lifetime care for a mentally retarded person (>$350,000), screening was calculated to be cost-effective. Because of the high prevalence of fragile-X premutation or full-mutation alleles, even in the general population, and because of the cost-effectiveness of the program, we recommend that screening to identify female carriers should be carried out on a wide scale.  相似文献   

13.
Fragile X syndrome, a form of X-linked mental retardation, results from the hyperexpansion of a CGG trinucleotide repeat located in the 5' untranslated region of the fragile X mental retardation (FMR1) gene. Relatively little is known about the initial mutation that causes a stable allele to become unstable and, eventually, to expand to the full mutation. In the present study, we have examined 1,452 parent-child transmissions of alleles of common (< or =39 repeats) or intermediate (40-59 repeats) sizes to study the initial mutation events. Of these, 201 have been sequenced and haplotyped. Using logistic regression analysis, we found that parental origin of transmission, repeat size (for unsequenced alleles), and number of the 3' CGGs (for sequenced alleles) were significant risk factors for repeat instability. Interestingly, transmission of the repeat through males was less stable than that through females, at the common- and intermediate-size level. This pattern differs from that seen for premutation-size alleles: paternally transmitted alleles are far more stable than maternally transmitted alleles. This difference that depends on repeat size suggests either a different mutational mechanism of instability or an increase in selection against sperm as their repeat size increases.  相似文献   

14.
Premutation alleles (55-200 CGG repeats) of the fragile X mental retardation 1 gene (FMR1) are known to contribute to the fragile X phenotype through genetic instability and transmission of full mutation alleles (>200 repeats). There is now mounting evidence that the premutation alleles themselves contribute to clinical involvement, including premature ovarian failure among female carriers and a new tremor/ataxia syndrome among older male carriers. Recent observations also provide direct evidence of dysregulation of the FMR1 gene in the premutation range, which may explain many of the clinical observations.  相似文献   

15.
The fragile X (FRAXA) syndrome is the most common form of inherited mental retardation in males. Its peculiar pattern of inheritance results from the parent of origin-specific expansion of a CGG-repeat within the FMR1 gene on the X chromosome. In patients, gene function is abolished by hypermethylation of the promoter and the massively expanded repeat. We have developed a methylation-sensitive polymerase chain reaction (MS-PCR) strategy that combines repeat-length and methylation analysis of the CGG-repeat and the promoters of the FMR1 and XIST genes. The allelic methylation of the latter opposes that of the FMR promoter and serves as an internal control and standard for semiquantitative analyses. This system enables the delineation of 11 distinct patterns encountered in nonaffected, carrier, and affected males and females. We have evaluated our system on well-defined samples with different FMR1 mutations and have used it for the diagnostic evaluation of 253 male and 80 female probands. In the male group, we have identified five full mutations, and three gray-zone and premutation alleles with 54, 55, and 62 repeats, respectively. The female group consists of 33 normal homozygote and 41 heterozygote individuals, two of whom harbor a gray-zone allele with 47 repeats, none with a premutation, and six with a full mutation. Our MS-PCR approach allows the currently most comprehensive diagnostic evaluation of the FRAXA syndrome in a cost- and time-efficient fashion. In addition, it is a valuable tool for the analysis of clonality and skewing phenomena in females.  相似文献   

16.
17.
18.
We report the results of a 14-center collaborative study of genotype-phenotype correlations in 318 fragile X families; these families comprised 2,253 individuals, 1,344 of whom carried a fragile X mutation and 693 of whom had a typical full fragile X mutation. This study demonstrates that direct DNA diagnosis establishes the genotype at the FRAXA-FMR-1 locus. There was a significantly higher prevalence of “mosaic” cases among males who carry a full mutation (12%) than among females who carry a full mutation (6%); the mosaic males had a larger expansion than did the mosaic females. Mental status of premutated individuals did not differ from that of those with a normal genotype. Both the abnormal methylation of the FMR-1–EagI site and the size of the expansion were highly correlated with cytogenetics, facial dysmorphism, macroorchidism, and mental retardation (MR). Among female carriers of a full mutation, those with MR had significantly larger expansion than did those without MR. Among 164 independent couples, 3 unrelated husbands carried a premutation that suggests that the prevalence of fragile X premutations in the general population is ~0.9% of the X chromosomes. Our data validate the use of direct DNA testing for fragile X diagnosis as well as for carrier identification and support and complete the established relationships among the DNA results and the cytogenetic, physical, and psychological aspects of the disease.  相似文献   

19.
The Fragile X mental retardation gene (FMR1) contains a polymorphic trinucleotide CGG repeat in the 5' untranslated region (UTR) of the FMR1 messenger. We have characterized three lymphoblastoid cell lines derived from unrelated male carriers of a premutation that overexpress FMR1 mRNA and show reduced FMRP level compared to normal cells. The analysis of polysomes/mRNPs distribution of mRNA in the cell lines with a premutation shows that the polysomal association of FMR1 mRNA, which is high in normal cells, becomes progressively lower with increasing CGG repeat expansion. In addition, we could detect a very low level of FMR1 mRNA in a lymphoblastoid cell line from a patient with a full mutation. In this case, FMR1 mRNA is not at all associated with polysomes, in agreement with the complete absence of FMRP. The impairment of FMR1 mRNA translation in patients with the Fragile X syndrome with FMR1 premutation is the cause of the lower FMRP levels that leads to the clinical involvement.  相似文献   

20.
A mouse model for the fragile X syndrome, the most common form of inherited mental retardation, was generated a number of years ago. It shows characteristics compatible with the clinical symptoms of human patients. These include pathological changes such as macroorchidism, behavioral problems, and diminished visuo-spatial abilities. To investigate whether the fragile X syndrome is a potentially correctable disorder, several groups attempted to 'rescue' the knockout mutation by introduction of an intact copy of the FMR1 gene in the knockout mouse. Two different types of rescue mice have been created by injection of constructs based on FMR1 cDNA or on FMR1 genomic DNA. Several pathological, behavioral and cognitive function tests were performed on these two different rescue mouse lines to compare their characteristics with those of the knockout and control littermates. Each rescue line resembled the control in some aspects though neither of the 2 lines was a full 'rescue', e.g. resemble the control in all aspects investigated. Thus, rescue of some aspects of the phenotype has been achieved by introduction of FMR1 constructs in the fragile X knockout mice. The results implicate that, even if FMR1 production is cell type specific, the quantity of the FMRP expression is highly critical as overproduction may have a harmful effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号