首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse intestinal helminth Heligmosomoides polygyrus modulates host immune responses by secreting a transforming growth factor (TGF)-β mimic (TGM), to expand the population of Foxp3+ Tregs. TGM comprises five complement control protein (CCP)-like domains, designated D1-D5. Though lacking homology to TGF-β, TGM binds directly to the TGF-β receptors TβRI and TβRII and stimulates the differentiation of naïve T-cells into Tregs. However, the molecular determinants of binding are unclear. Here, we used surface plasmon resonance, isothermal calorimetry, NMR spectroscopy, and mutagenesis to investigate how TGM binds the TGF-β receptors. We demonstrate that binding is modular, with D1-D2 binding to TβRI and D3 binding to TβRII. D1-D2 and D3 were further shown to compete with TGF-β(TβRII)2 and TGF-β for binding to TβRI and TβRII, respectively. The solution structure of TGM-D3 revealed that TGM adopts a CCP-like fold but is also modified to allow the C-terminal strand to diverge, leading to an expansion of the domain and opening potential interaction surfaces. TGM-D3 also incorporates a long structurally ordered hypervariable loop, adding further potential interaction sites. Through NMR shift perturbations and binding studies of TGM-D3 and TβRII variants, TGM-D3 was shown to occupy the same site of TβRII as bound by TGF-β using both a novel interaction surface and the hypervariable loop. These results, together with the identification of other secreted CCP-like proteins with immunomodulatory activity in H. polygyrus, suggest that TGM is part of a larger family of evolutionarily plastic parasite effector molecules that mediate novel interactions with their host.  相似文献   

2.
3.
4.
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.  相似文献   

5.
Treatment of FaO rat hepatoma cells with TGF-β selects cells that survive to its apoptotic effect and undergo epithelial–mesenchymal transitions (EMT). We have established a cell line (TβT-FaO, from TGF-β-treated FaO) that shows a mesenchymal, de-differentiated, phenotype in the presence of TGF-β and is refractory to its suppressor effects. In the absence of this cytokine, cells revert to an epithelial phenotype in 3–4 weeks and recover the response to TGF-β. TβT-FaO show higher capacity to migrate than that observed in the parental FaO cells. We found that FaO cells express low levels of CXCR4 and do not respond to SDF-1α. However, TGF-β up-regulates CXCR4, through a NFkappaB-dependent mechanism, and TβT-FaO cells show elevated levels of CXCR4, which is located in the presumptive migration front. A specific CXCR4 antagonist (AMD3100) attenuates the migratory capacity of TβT-FaO cells on collagen gels. Extracellular SDF-1α activates the ERKs pathway in TβT-FaO, but not in FaO cells, increasing cell scattering and protecting cells from apoptosis induced by serum deprivation. Targeted knock-down of CXCR4 with specific siRNA blocks the TβT-FaO response to SDF-1α. Thus, the SDF-1/CXCR4 axis might play an important role in mediating cell migration and survival after a TGF-β-induced EMT in hepatoma cells.  相似文献   

6.
The transforming growth factor-betas (TGF-βs) are synthesized as precursor proteins that are modified intracellularly prior to secretion. One of the most relevant intracellular modifications is the cleavage of the C-terminal pro-region from the N-terminal portion of the protein. The C-terminal pro-region is referred to as the latency-associated peptide (LAP) while the N-terminal region is called the mature TGF-β or active TGF-β. However, with some exceptions the LAP noncovalently associates with the mature TGF-β prior to secretion. When the mature TGF-β is associated with the LAP it is called L-TGF-β and cannot interact with its receptor and has no biological effect. The TGF-βs and their receptors are very ubiquitously expressed, suggesting that the regulation of TGF-β activity is likely to be complex and multifactorial. However, one of the most important means of controlling the biological effects of TGF-β is the regulation of converting L-TGF-β to active TGF-β. The current literature supports two major mechanisms of activation of L-TGF-β and suggests that the mechanism of activation of L-TGF-β may be varied and context-dependent. For TGF-β to become biologically active the LAP has to be either released from its associations with L-TGF-β or undergo conformational change such that the LAP is not released from the L-TGF-β complex but exposes the TGF-β receptor binding site. Since TGF-β has been associated with the pathogenesis of numerous diseases, the various mechanisms of activation of L-TGF-β in context offer the possibility of controlling TGF-β activity localized to the organ of involvement and to a more specific disease process.  相似文献   

7.
We have investigated the localization pattern of the transforming growth factor-β (TGF-β) receptors type I (TβR-I) and type II (TβR-II) during mouse organogenesis by immunohistochemical analysis. Staining of both receptors was found in many developing organs, e.g., bone, teeth, Meckel's cartilage, and neural tissues, where the expression of their ligands has been previously reported. During the investigated stages, expression of TβR-I was more ubiquitous than that of TβR-II. TβR-II preferentially localized in the undifferentiated mesenchymal cells which subsequently differentiated into bone. There was no staining of TβR-II in the central nervous system, while intense TβR-I staining was found specifically in nervous tissues. Expression of TβR-I and TβR-II was mostly coincident with that of their ligands, suggesting that TGF-βs act as multiple mediators during organogenesis. In addition, colocalization of both receptors in the epithelia of the tooth bud and submandibular gland, which were actively invaginating into the mesenchyme, leads us to speculate that both receptors may be necessary for dynamic epithelial morphogenesis.  相似文献   

8.
We have previously shown that both transforming growth factor-β (TGF-β) and retinoic acid (HA) regulate the expression of cellular retinoic acid binding proteins (CRABP) I and II and TGF-β3 mRNAs in primary cultures of murine embryonic palate mesenchyreal (MEPM) cells. We now describe additional crosstalk between the RA and TGF-β signal transduction pathways—the ability of TGF-β, including the endogenous form(s), to modulate the expression of the nuclear retinoic acid receptor-β (RAR-β). Northern blot hybridization revealed that RA induced the expression of RAR-β mRNA, there being little or no detectable expression in untreated MEPM cells. Induction by 3.3 μM RA was abrogated by simultaneous treatment with TGF-β1 (5 ng/ml). TGF-β1 alone had no effect on RAR. mRNA expression. Determination of RAR-β mRNA half-life by treatment with actinomycin D indicated that TGF-β1 did not alter the stability of RAR-β mRNA. Conditioned medium (CM) from MEPM cells contained little active TGF-β protein; heat treatment of the CM dramatically increased the amount of active TGF-β as assessed by the mink lung epithelial cell bioassay. Furthermore, heat- or acid-activated CM also inhibited CRABP-I and RA-induced RAR-β expression. The effect of heat-activated conditioned medium could be abrogated with panspecific neutralizing antibodies to TGF-β, confirming that endogenous TGF-β is the biologically active factor in heat-activated CM. These results provide evidence for complex interactions between TGF-β and RA in the regulation of gene expression in embryonic palatal cells and suggest a role for endogenous TGF-β in the regulation of expression of genes encoding elements of the RA signal transduction pathway.  相似文献   

9.
Abstract. Transforming growth factor β (TGF-β) signaling involves interactions of at least two different receptors, types I (TβRI) and II (TβRII), which form ligand-mediated heteromeric complexes. Although we have shown in the past that TβRII in the absence of ligand is a homodimer on the cell surface, TβRI has not been similarly investigated, and the site of complex formation is not known for either receptor. Several studies have indicated that homomeric interactions are involved in TGF-β signaling and regulation, emphasizing the importance of a detailed understanding of the homooligomerization of TβRI or TβRII. Here we have combined complementary approaches to study these homomeric interactions in both naturally expressing cell lines and cells cotransfected with various combinations of epitope-tagged type I or type II receptors. We used sedimentation velocity of metabolically labeled receptors on sucrose gradients to show that both TβRI and TβRII form homodimer-sized complexes in the endoplasmic reticulum, and we used coimmunoprecipitation studies to demonstrate the existence of type I homooligomers. Using a technique based on antibody-mediated immunofluorescence copatching of receptors carrying different epitope tags, we have demonstrated ligand-independent homodimers of TβRI on the surface of live cells. Soluble forms of both receptors are secreted as monomers, indicating that the ectodomains are not sufficient to mediate homodimerization, although TGF-β1 is able to promote dimerization of the type II receptor ectodomain. These findings may have important implications for the regulation of TGF-β signaling.  相似文献   

10.
We have previously shown that a WD-40 repeat protein, TRIP-1, associates with the type II transforming growth factor β (TGF-β) receptor. In this report, we show that another WD-40 repeat protein, the Bα subunit of protein phosphatase 2A, associates with the cytoplasmic domain of type I TGF-β receptors. This association depends on the kinase activity of the type I receptor, is increased by coexpression of the type II receptor, which is known to phosphorylate and activate the type I receptor, and allows the type I receptor to phosphorylate Bα. Furthermore, Bα enhances the growth inhibition activity of TGF-β in a receptor-dependent manner. Because Bα has been characterized as a regulator of phosphatase 2A activity, our observations suggest possible functional interactions between the TGF-β receptor complex and the regulation of protein phosphatase 2A.  相似文献   

11.
Endocytosis and intracellular sorting of transforming growth factor-β (TGF-β) receptors play an important regulatory role in TGF-β signaling. Two major endocytic pathways, clathrin- and caveolae-mediated endocytosis, have been reported to independently mediate the internalization of TGF-β receptors. In this study, we demonstrate that the clathrin- and caveolae-mediated endocytic pathways can converge during TGF-β receptor endocytic trafficking. By tracking the intracellular dynamics of fluorescently-labeled TGF-β type I receptor (TβRI), we found that after mediating TβRI internalization, certain clathrin-coated vesicles and caveolar vesicles are fused underneath the plasma membrane, forming a novel type of caveolin-1 and clathrin double-positive vesicles. Under the regulation of Rab5, the fused vesicles are targeted to early endosomes and thus deliver the internalized TβRI to the caveolin-1 and EEA1 double-positive early endosomes (caveolin-1-positive early endosomes). We further showed that the caveolin-1-positive early endosomes are positive for Smad3/SARA, Rab11 and Smad7/Smurf2, and may act as a multifunctional device for TGF-β signaling and TGF-β receptor recycling and degradation. Therefore, these findings uncover a novel scenario of endocytosis, the direct fusion of clathrin-coated and caveolae vesicles during TGF-β receptor endocytic trafficking, which leads to the formation of the multifunctional sorting device, caveolin-1-positive early endosomes, for TGF-β receptors.  相似文献   

12.
Dendritic cells (DCs) represent antigen-presenting cell (APC) populations in lymphoid and nonlymphoid organs which are considered to play key roles in the initiation of antigen-specific T-cell proliferation. According to current knowledge, the net outcome of T-cell immune responses seems to be significantly influenced by the activation stage of antigen-presenting DCs. Several studies have shown that transforming growth factor-beta 1 (TGF-β1) inhibits in vitro activation and maturation of DCs. TGF-β1 inhibits upregulation of critical T-cell costimulatory molecules on the surface of DCs and reduces the antigen-presenting capacity of DCs. Thus, in addition to direct inhibitory effects of TGF-β1 on effector T lymphocytes, inhibitory effects of TGF-β1 at the level of APCs may critically contribute to previously characterized immunosuppressive effects of TGF-β1. In contrast to these negative regulatory effects of TGF-β1 on function and maturation of lymphoid tissue type DCs, certain subpopulations of immature DCs in nonlymphoid tissues are positively regulated by TGF-β1 signaling. In particular, epithelial-associated DC populations seem to critically require TGF-β1 stimulation for development and function. Recent studies established that TGF-β1 stimulation is absolutely required for the development of epithelial Langerhans cells (LCs) in vitro and in vivo. Furthermore, TGF-β1 seems to enhance antigen processing and costimulatory functions of epithelial LCs.  相似文献   

13.
The relationships between transforming growth factor-β (TGF-β) and cancer are varied and complex. The paradigm that is emerging from the experimental evidence accumulated over the past decade or so is that TGF-β can play two different and opposite roles with respect to the process of malignant progression. During early stages of carcinogenesis, TGF-β acts predominantly as a potent tumor suppressor and may mediate the actions of chemopreventive agents such as retinoids and nonsteroidal anti-estrogens. However, at some point during the development and progression of malignant neoplasms, bioactive TGF-βs make their appearance in the tumor microenvironment and the tumor cells escape from TGF-β-dependent growth arrest. In many cases, this resistance to TGF-β is the consequence of loss or mutational inactivation of the genes that encode signaling intermediates. These include the types I and II TGF-β receptors, as well as receptor-associated and common-mediator Smads. The stage of tumor development or progression at which TGF-β-resistant clones come to dominate the tumor cell population in different types of neoplasm remains to be defined. The phenotypic switch from TGF-β-sensitivity to TGF-β-resistance that occurs during carcinogenesis has several important implications for cancer prevention and treatment.  相似文献   

14.
15.
Transforming growth factor-beta (TGF-β) isoforms are multifunctional cytokines that play a central role in wound healing and in tissue repair. TGF-β is found in all tissues, but is particularly abundant in bone, lung, kidney and placental tissue. TGF-β is produced by many but not all parenchymal cell types, and is also produced or released by infiltrating cells such as lymphocytes, monocytes/macrophages, and platelets. Following wounding or inflammation, all these cells are potential sources of TGF-β. In general, the release and activation of TGF-β stimulates the production of various extracellular matrix proteins and inhibits the degradation of these matrix proteins, although exceptions to these principles abound. These actions of TGF-β contribute to tissue repair, which under ideal circumstances leads to the restoration of normal tissue architecture and may involve a component of tissue fibrosis. In many diseases, excessive TGF-β contributes to a pathologic excess of tissue fibrosis that compromises normal organ function, a topic that has been the subject of numerous reviews [1, 2 and 3]. In the following chapter, we will discuss the role of TGF-β in tissue fibrosis, with particular emphasis on renal fibrosis.  相似文献   

16.
The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways.  相似文献   

17.
The effects of retinoic acid (RA) on lung cancer cells were investigated. Both all-trans (t-RA) and 13-cis RA (c-RA) decreased specific 125I-VIP binding to NCI-H1299 cells in a time- and concentration-dependent manner. After 20 hr, 30 μM t-RA decreased specific 125I-VIP binding by 60%. By Scatchard analysis, the density of VIP binding sites but not the affinity was reduced by 42%. NCI-H1299 VPAC1 receptor mRNA was reduced by 48%. VIP caused a 3-fold elevation in the NCI-H1299 cAMP, and the increase in cAMP caused by VIP was reduced by 38% if the NCI-H1299 cells were treated with t-RA. Using the MTT assay, 3 μM t-RA and 3 μM c-RA inhibited NCI-H1299 proliferation by 60 and 23% respectively. Also, transforming growth factor (TGF)-β2 increased after treatment of NCI-H1299 cells with t-RA whereas TGF-β1 mRNA was unaffected and TGF-β3 mRNA was decreased. These results suggest that RA may inhibit lung cancer growth by down-regulating VPAC1 receptor and TGF-β3 mRNA but up-regulating TGF-β2 mRNA.  相似文献   

18.
Appropriate cellular signaling is essential to control cell proliferation, differentiation, and cell death. Aberrant signaling can have devastating consequences and lead to disease states, including cancer. The transforming growth factor-β (TGF-β) signaling pathway is a prominent signaling pathway that has been tightly regulated in normal cells, whereas its deregulation strongly correlates with the progression of human cancers. The regulation of the TGF-β signaling pathway involves a variety of physiological regulators. Many of these molecules act to alter the activity of Smad proteins. In contrast, the number of molecules known to affect the TGF-β signaling pathway at the receptor level is relatively low, and there are no known direct modulators for the TGF-β type II receptor (TβRII). Here we identify SPSB1 (a Spry domain-containing Socs box protein) as a novel regulator of the TGF-β signaling pathway. SPSB1 negatively regulates the TGF-β signaling pathway through its interaction with both endogenous and overexpressed TβRII (and not TβRI) via its Spry domain. As such, TβRII and SPSB1 co-localize on the cell membrane. SPSB1 maintains TβRII at a low level by enhancing the ubiquitination levels and degradation rates of TβRII through its Socs box. More importantly, silencing SPSB1 by siRNA results in enhanced TGF-β signaling and migration and invasion of tumor cells.  相似文献   

19.
H.G.  L.M.  N.L.  S.  M.W.J.   《Cytokine & growth factor reviews》2009,20(4):305-317
With the development of growth factors and growth factor modulators as therapeutics for a range of disorders, it is prudent to consider whether modulating the growth factor profile in a tissue can influence tumour initiation or progression. As recombinant human TGF-β3 (avotermin) is being developed for the improvement of scarring in the skin it is important to understand the role, if any, of this cytokine in tumour progression.Elevated levels of TGF-β3 expression detected in late-stage tumours have linked this cytokine with tumourigenesis, although functional data to support a causative role are lacking. While it has proved tempting for researchers to interpret a ‘correlation’ as a ‘cause’ of disease, what has often been overlooked is the normal biological role of TGF-β3 in processes that are often subverted in tumourigenesis. Clarifying the role of this cytokine is complicated by inappropriate extrapolation of the data relating to TGF-β1 in tumourigenesis, despite marked differences in biology between the TGF-β isoforms. Indeed, published studies have indicated that TGF-β3 may actually play a protective role against tumourigenesis in a range of tissues including the skin, breast, oral and gastric mucosa. Based on currently available data it is reasonable to hypothesize that administration of acute low doses of exogenous TGF-β3 is unlikely to influence tumour initiation or progression.  相似文献   

20.
Transforming growth factor-β (TGF-β) ligands activate Smad-mediated and noncanonical signaling pathways in a cell context–dependent manner. Localization of signaling receptors to distinct membrane domains is a potential source of signaling output diversity. The tumor suppressor/endocytic adaptor protein disabled-2 (Dab2) was proposed as a modulator of TGF-β signaling. However, the molecular mechanism(s) involved in the regulation of TGF-β signaling by Dab2 were not known. Here we investigate these issues by combining biophysical studies of the lateral mobility and endocytosis of the type I TGF-β receptor (TβRI) with TGF-β phosphoprotein signaling assays. Our findings demonstrate that Dab2 interacts with TβRI to restrict its lateral diffusion at the plasma membrane and enhance its clathrin-mediated endocytosis. Small interfering RNA–mediated knockdown of Dab2 or Dab2 overexpression shows that Dab2 negatively regulates TGF-β–induced c-Jun N-terminal kinase (JNK) activation, whereas activation of the Smad pathway is unaffected. Moreover, activation of JNK by TGF-β in the absence of Dab2 is disrupted by cholesterol depletion. These data support a model in which Dab2 regulates the domain localization of TβRI in the membrane, balancing TGF-β signaling via the Smad and JNK pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号