首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl2 not only prolongs cell survival but also suppresses the repair of abasic (AP) sites of DNA lesions. Apurinic/apyrimidinic endonuclease 1 (APE1) plays a central role in the repair of AP sites via the base excision repair pathway. Here we found that Bcl2 down-regulates APE1 endonuclease activity in association with inhibition of AP site repair. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus and interaction with APE1, which requires all of the BH domains of Bcl2. Deletion of any of the BH domains from Bcl2 abrogates the ability of Bcl2 to interact with APE1 as well as the inhibitory effects of Bcl2 on APE1 activity and AP site repair. Overexpression of Bcl2 in cells reduces formation of the APE1.XRCC1 complex, and purified Bcl2 protein directly disrupts the APE1.XRCC1 complex with suppression of APE1 endonuclease activity in vitro. Importantly, specific knockdown of endogenous Bcl2 by RNA interference enhances APE1 endonuclease activity with accelerated AP site repair. Thus, Bcl2 inhibition of AP site repair may occur in a novel mechanism by down-regulating APE1 endonuclease activity, which may promote genetic instability and tumorigenesis.  相似文献   

2.
3.
4.
Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutSalpha is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutSalpha activity and increased mutagenesis. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus, which interacts with hMSH6 but not hMSH2 via its BH4 domain. Deletion of the BH4 domain from Bcl2 abrogates the ability of Bcl2 to interact with hMSH6 and is associated with enhanced MMR efficiency and decreased mutation frequency. Overexpression of Bcl2 reduces formation of the hMSH2-hMSH6 complex in cells, and purified Bcl2 protein directly disrupts the hMSH2-hMSH6 complex and suppresses MMR in vitro. Importantly, depletion of endogenous Bcl2 by RNA interference enhances formation of the hMSH2-hMSH6 complex in association with increased MMR and decreased mutagenesis. Thus, Bcl2 suppression of MMR may occur in a novel mechanism by directly regulating the heterodimeric hMSH2-hMSH6 complex, which potentially contributes to genetic instability and carcinogenesis.  相似文献   

5.
Recently it has been shown that the potent apoptotic agent ceramide activates a mitochondrial protein phosphatase 2A (PP2A) and promotes dephosphorylation of the anti-apoptotic molecule Bcl2 (Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) J. Biol. Chem. 274, 20296-20300). In cells expressing Bcl2, dephosphorylation of Bcl2 appears to be required for ceramide-induced cell death because treatment of cells with low doses of the PP2A inhibitor okadaic acid blocks Bcl2 dephosphorylation and promotes cell survival. Furthermore, the non-phosphorylatable (i.e. PP2A-resistant) gain-of-function S70E mutant Bcl2 can protect cells from ceramide-induced apoptosis. These findings support a model whereby Bcl2 function is regulated by PP2A. PP2A is a heterotrimer that contains a catalytic C-subunit, a structural A-subunit, and a regulatory B-subunit. The A- and C-subunits are fairly conserved and ubiquitously expressed, and they form the catalytic complex of the phosphatase. In contrast, there are at least three families of diverse B-subunit molecules that vary in expression temporally and by tissue type. It is hypothesized that ceramide regulates PP2A via the B-subunit. Thus, understanding the mechanism of how PP2A regulates Bcl2 phosphorylation status and how ceramide might regulate this process requires identification of the regulatory B-subunit of PP2A that comprises the Bcl2 phosphatase. Results indicate that the B56 alpha-subunit is a candidate regulatory subunit of the physiologic Bcl2 phosphatase since (a) B56 alpha associates with Bcl2 as evidenced by pull-down experiments, (b) B56 alpha co-localizes with Bcl2 in mitochondrial membranes, (c) ceramide promotes translocation of B56 alpha to mitochondrial membranes, and (d) overexpression of B56 alpha promotes mitochondrial PP2A activity and Bcl2 dephosphorylation and potentiates cell killing with ceramide. These findings suggest a role for B56 alpha in regulating the Bcl2 phosphatase.  相似文献   

6.
7.
8.
9.
To elucidate the function of Bcl10, recently cloned as an apoptosis-associated gene mutated in MALT lymphoma, we identified its binding partner TRAF2, which mediates signaling via tumor necrosis factor receptors. In mammalian cells, low levels of Bcl10 expression promoted the binding of TRAF2 and c-IAPs. Conversely, excessive expression inhibited complex formation. Overexpressed Bcl10 reduced c-Jun N-terminal kinase activation and induced nuclear factor kappaB activation downstream of TRAF2. To determine whether overexpression of Bcl10 could perturb the regulation of apoptosis in vivo, we generated Bcl10 transgenic mice. In these transgenic mice, atrophy of the thymus and spleen was observed at postnatal stages. The morphological changes in these tissues were caused by acceleration of apoptosis in T cells and B cells. The phenotype of Bcl10 transgenic mice was similar to that of TRAF2-deficient mice reported previously, indicating that excessive expression of Bcl10 might deplete the TRAF2 function. In contrast, in the other organs such as the brain, where Bcl10 was expressed at high levels, no apoptosis was detected. The altered sensitivities to overexpressed Bcl10 may have been due to differences in signal responses to Bcl10 among cell types. Thus, Bcl10 was suggested to play crucial roles in the modulation of apoptosis associated with TRAF2.  相似文献   

10.
Nicotine is not only a major component in tobacco but is also a survival agonist that inhibits apoptosis induced by diverse stimuli including chemotherapeutic drugs. However, the intracellular mechanism(s) involved in nicotine suppression of apoptosis is unclear. Bcl2 is a potent antiapoptotic protein and tumor promotor that is expressed in both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) cells. It is possible that nicotine may regulate Bcl2 to stimulate cell survival. Here we report that nicotine can induce Bcl2 phosphorylation exclusively at the serine 70 site in association with prolonged survival of SCLC H82 cells expressing wild-type but not the phosphorylation-deficient S70A mutant Bcl2 after treatment with chemotherapeutic agents (i.e. cisplatin or VP-16). Nicotine induces activation of PKC alpha and the MAPKs ERK1 and ERK2, which are physiological Bcl2 kinases. Furthermore, ET-18-OCH3, a specific phospholipase C (PLC) inhibitor, blocks nicotine-stimulated Bcl2 phosphorylation and promotes apoptosis, suggesting that PLC may be involved in nicotine activation of Bcl2 kinases. Using a genetic approach, the gain-of-function S70E mutant, which mimics Ser(70) site phosphorylation in the flexible loop domain, potently enhances chemoresistance in SCLC cells. Thus, nicotine-induced cell survival results, at least in part, from a mechanism that involves Bcl2 phosphorylation. Therefore, novel therapeutic strategies for lung cancer in which Bcl2 is expressed may be used to abrogate the anti-apoptotic activity of Bcl2 by inhibiting multiple upstream nicotine-activated pathways.  相似文献   

11.
Vitamin A affects many aspects of T lymphocyte development and function. The vitamin A metabolites all-trans- and 9-cis-retinoic acid regulate gene expression by binding to the retinoic acid receptor (RAR), while 9-cis-retinoic acid also binds to the retinoid X receptor (RXR). Naive DO11.10 T lymphocytes expressed mRNA and protein for RAR-alpha, RXR-alpha, and RXR-beta. DNA microarray analysis was used to identify RXR-responsive genes in naive DO11.10 T lymphocytes treated with the RXR agonist AGN194204. A total of 128 genes was differentially expressed, including 16 (15%) involved in cell growth or apoptosis. Among these was Bcl2a1, an antiapoptotic Bcl2 family member. Quantitative real-time PCR analysis confirmed this finding and demonstrated that Bcl2a1 mRNA expression was significantly greater in nonapoptotic than in apoptotic T lymphocytes. The RXR agonist 9-cis-retinoic acid also increased Bcl2a1 expression, although all-trans-retinoic acid and ligands for other RXR partner receptors did not. Treatment with AGN194204 and 9-cis-retinoic acid significantly decreased apoptosis measured by annexin V staining but did not affect expression of Bcl2 and Bcl-xL. Bcl2a1 promoter activity was examined using a luciferase promoter construct. Both AGN194204 and 9-cis-retinoic acid significantly increased luciferase activity. In summary, these data demonstrate that RXR agonists increase Bcl2a1 promoter activity and increase expression of Bcl2a1 in naive T lymphocytes but do not affect Bcl2 and Bcl-xL expression in naive T lymphocytes. Thus, this effect on Bcl2a1 expression may account for the decreased apoptosis seen in naive T lymphocytes treated with RXR agonists.  相似文献   

12.
Th2-type inflammation spontaneously shown in Bcl6-knockout (KO) mice is mainly caused by bone marrow (BM)-derived nonlymphoid cells. However, the function of dendritic cells (DCs) in Bcl6-KO mice has not been reported. We show in this article that the numbers of CD4(+) conventional DCs (cDCs) and CD8α(+) cDCs, but not of plasmacytoid DCs, were markedly reduced in the spleen of Bcl6-KO mice. Generation of cDCs from DC progenitors in BM cells was perturbed in the spleen of irradiated wild-type (WT) mice transferred with Bcl6-KO BM cells, indicating an intrinsic effect of Bcl6 in cDC precursors. Although cDC precursors were developed in a Bcl6-KO BM culture with Fms-like tyrosine kinase 3 ligand, the cDC precursors were more apoptotic than WT ones. Also p53, one of the molecular targets of Bcl6, was overexpressed in the precursors. The addition of a p53 inhibitor to Bcl6-KO BM culture protected apoptosis, suggesting that Bcl6 is required by cDC precursors for survival by controlling p53 expression. Furthermore, large numbers of T1/ST2(+) Th2 cells were naturally developed in the spleen of Bcl6-KO mice. Th2 skewing was accelerated in the culture of WT CD4 T cells stimulated with Ags and LPS-activated Bcl6-KO BM-derived DCs, which produced more IL-6 and less IL-12 than did WT DCs; the addition of anti-IL-6 Abs to the culture partially abrogated the Th2 skewing. These results suggest that Bcl6 is required in cDC precursors for survival and in activated DCs for modulating the cytokine profile.  相似文献   

13.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

14.
Proteins belonging to Bcl‐2 family regulate intrinsic cell death pathway. Although mammalian antiapoptotic Bcl‐2 members interact with multiple proapoptotic proteins, the Caenorhabditis elegans Bcl‐2 homolog CED‐9 is known to have only two proapoptotic partners. The BH3‐motif of proapoptotic proteins bind to the hydrophobic groove of prosurvival proteins formed by the Bcl‐2 helical fold. CED‐9 is also known to interact with CED‐4, a homolog of the human cell death activator Apaf1. We have performed molecular dynamics simulations of CED‐9 in two forms and compared the results with those of mammalian counterparts Bcl‐XL, Bcl‐w, and Bcl‐2. Our studies demonstrate that the region forming the hydrophobic cleft is more flexible compared with the CED‐4‐binding region, and this is generally true for all antiapoptotic Bcl‐2 proteins studied. CED‐9 is the most stable protein during simulations and its hydrophobic pocket is relatively rigid explaining the absence of functional redundancy in CED‐9. The BH3‐binding region of Bcl‐2 is less flexible among the mammalian proteins and this lends support to the studies that Bcl‐2 binds to less number of BH3 peptides with high affinity. The C‐terminal helix of CED‐9 lost its helical character because of a large number of charged residues. We speculate that this region probably plays a role in intracellular localization of CED‐9. The BH4‐motif accessibility in CED‐9 and Bcl‐w is controlled by the loop connecting the first two helices. Although CED‐9 adopts the same Bcl‐2 fold, our studies highlight important differences in the dynamic behavior of CED‐9 and mammalian antiapoptotic homologs. Proteins 2014; 82:1035–1047. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The purpose of this study was to determine whether regression of the decidua basalis (DB), which begins on Day 14 of pregnancy in the rat, results from an intrinsic program of apoptosis regulated by Bax and Bcl2. Expression of Bax and Bcl2 and the incidence of apoptosis were evaluated throughout gestation by Western blot analysis and detection of DNA fragments. Antiprogestin (RU486) was also administered during proliferation of DB to study progesterone regulation of Bax/Bcl2 balance. Bax, the pro-apoptotic protein, was expressed at a low level throughout pregnancy, whereas Bcl2, the pro-survival partner, was most abundantly expressed on Days 8 and 10, which are a time of proliferation and decidualization, and declined to barely detectable levels thereafter. These changes resulted in a 12-fold increase in the Bax:Bcl2 ratio on Day 17 as compared with Day 8 of pregnancy (P < 0.05). DNA laddering and in situ staining of DNA fragments first became visible on Day 14 and involved 2% of cells by Days 17 and 21 (P < 0.05). Treatment with RU486 on Day 9 enhanced Bax and suppressed Bcl2 within 6 h, increasing the Bax:Bcl2 ratio sixfold (P < 0.05). Apoptosis was minimal at 6 h and increased to 9% of cells by 24 h (P < 0.05). Thus, progesterone appears to regulate the apoptotic threshold of stromal cells by modulating Bax and Bcl2 expression.  相似文献   

16.
Overexpression of anti-apoptotic Bcl2 family proteins is often seen in cancers rendering them insensitive to apoptosis inducing anticancer strategies. Anti-apoptotic Bcl2 family proteins are associated with different organelles like mitochondria and endoplasmic reticulum (ER) and exert their anti-apoptotic activity by inhibiting the release of Cyt.C from mitochondria irrespective of its localization. Here, we have identified a long term survival function for Bcl2 targeted at ER in mammalian system compared to wild type Bcl2 that is mediated by enhanced phosphorylation of heat shock protein 27 at ser 15, 78 and 82 sites with inhibition of caspase9 activity. Phosphorylation of hsp27 was prevented and the survival of ER-Bcl2 cells was reversed by inhibiting p38 and MEK suggesting that these kinases can act as the upstream targets for hsp27 phosphorylation. The results suggest that Bcl2 possess additional survival function in the regulation of apoptosis which is primarily regulated by its association with the ER in an hsp27 dependent manner. The interplay of both hsp27 and ER-Bcl2 in providing long term survival to cancer cells is interesting since both of these proteins are overexpressed in tumors with aggressive phenotype. The results suggest that spatial localization of Bcl2 family proteins also play a key role in long term survival of cancers indicating another level of functional regulation of Bcl2 in cancer cell survival.  相似文献   

17.
The Bcl2 family of proteins plays a significant role in regulation of apoptosis. In this study, the microtubule-damaging drugs paclitaxel, vincristine, and vinblastine induced Bcl2 hyperphosphorylation and apoptosis in MCF-7 and MDA-MB-231 cells and reduced Bcl2-Bax dimerization. Paclitaxel or vincristine induced increased expression of Bax, while overexpression of Bcl2 in these cell lines counteracted the effects of low doses of these drugs. In addition, paclitaxel- and vincristine-induced activation of cyclic AMP (cAMP)-dependent protein kinase (protein kinase A [PKA]) induced Bcl2 hyperphosphorylation and apoptosis, which were blocked by the PKA inhibitor Rp diastereomers of cAMP (Rp-cAMP). This finding suggests that activation of PKA due to microtubule damage is an important event in Bcl2 hyperphosphorylation and induction of apoptosis. These microtubule-damaging drugs caused growth arrest in G2-M phase of the cell cycle and had no effect on p53 induction, suggesting that hyperphosphorylation mediated inactivation of Bcl2 and apoptosis without the involvement of p53. By comparison, the DNA-damaging drugs methotrexate and doxorubicin had no effect on Bcl2 hyperphosphorylation but induced p53 expression. Interestingly, paclitaxel or vincristine induced activation of caspase 3 and cleavage of poly(ADP-ribose) polymerase downstream of Bcl2 hyperphosphorylation. These data suggest that there may be a signaling cascade induced by agents that disrupt or damage the cytoskeleton that is distinct from (i.e., p53 independent), but perhaps related to (i.e., involves kinase activation and leads to apoptosis), the cellular response to DNA damage.  相似文献   

18.
19.
目的和方法 :采用免疫组化方法 ,观察缺氧对体外培养大鼠海马神经元Bcl 2表达及人重组白细胞介素 6(rhIL 6)的影响。结果 :经rhIL 6孵育的海马神经元缺氧后神经元活存数、Bcl 2表达阳性神经元数和Bcl 2表达阳性神经元的平均光密度均明显高于对照组。结论 :rhIL 6能增强缺氧神经元Bcl 2的表达 ,抑制缺氧后神经元的死亡 ,提示rhIL 6参与脑缺氧损伤的调控。  相似文献   

20.
Wang Q  Gao F  May WS  Zhang Y  Flagg T  Deng X 《Molecular cell》2008,29(4):488-498
Bcl2 can enhance susceptibility to carcinogenesis, but the mechanism(s) remains fragmentary. Here we discovered that Bcl2 suppresses DNA double-strand-break (DSB) repair and V(D)J recombination by downregulating Ku DNA binding activity, which is associated with increased genetic instability. Exposure of cells to ionizing radiation enhances Bcl2 expression in the nucleus, which interacts with both Ku70 and Ku86 via its BH1 and BH4 domains. Removal of the BH1 or BH4 domain abrogates the inhibitory effect of Bcl2 on Ku DNA binding, DNA-PK, and DNA end-joining activities, which results in the failure of Bcl2 to block DSB repair as well as V(D)J recombination. Intriguingly, Bcl2 directly disrupts the Ku/DNA-PKcs complex in vivo and in vitro. Thus, Bcl2 suppression of the general DSB repair and V(D)J recombination may occur in a mechanism by inhibiting the nonhomologous end-joining pathway, which may lead to an accumulation of DNA damage and genetic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号