共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyung Don Ryoo 《BMB reports》2015,48(8):445-453
Endoplasmic Reticulum (ER) is an organelle where most secretory and membrane proteins are synthesized, folded, and undergo further maturation. As numerous conditions can perturb such ER function, eukaryotic cells are equipped with responsive signaling pathways, widely referred to as the Unfolded Protein Response (UPR). Chronic conditions of ER stress that cannot be fully resolved by UPR, or conditions that impair UPR signaling itself, are associated with many metabolic and degenerative diseases. In recent years, Drosophila has been actively employed to study such connections between UPR and disease. Notably, the UPR pathways are largely conserved between Drosophila and humans, and the mediating genes are essential for development in both organisms, indicating their requirement to resolve inherent stress. By now, many Drosophila mutations are known to impose stress in the ER, and a number of these appear similar to those that underlie human diseases. In addition, studies have employed the strategy of overexpressing human mutations in Drosophila tissues to perform genetic modifier screens. The fact that the basic UPR pathways are conserved, together with the availability of many human disease models in this organism, makes Drosophila a powerful tool for studying human disease mechanisms. [BMB Reports 2015; 48(8): 445-453] 相似文献
2.
Lass A McConnell E Fleck K Palamarchuk A Wójcik C 《Experimental cell research》2008,314(14):2715-2723
Npl4 is a 67 kDa protein forming a stable heterodimer with Ufd1, which in turn binds the ubiquitous p97/VCP ATPase. According to a widely accepted model, VCPUfd1–Npl4 promotes the retrotranslocation of emerging ER proteins, their ubiquitination by associated ligases, and handling to the 26S proteasome for degradation in a process known as ERAD (ER-associated degradation). Using a series of Npl4 deletion mutants we have revealed that the binding of Ufd1 to Npl4 is mediated by two regions: a conserved stretch of amino acids from 113 to 255 within the zf-Npl4 domain and by the Npl4 homology domain between amino acids 263 and 344. Within the first region, we have identified two discrete subdomains: one involved in Ufd1 binding and one regulating VCP binding. Expression of any one of the mutants failed to induce any changes in the morphology of the ER or Golgi compartments. Moreover, we have observed that overexpression of all the analyzed mutants induced mild ER stress, as evidenced by increased Grp74/BiP expression without associated XBP1 splicing or induction of apoptosis. Surprisingly, we have not observed any accumulation of the typical ERAD substrate αTCR. This favors the model where the Ufd1–Npl4 dimer forms a regulatory gate at the exit from the retrotranslocone, rather than actively promoting retrotranslocation like the p97VCP ATPase. 相似文献
3.
Malki A Kern R Abdallah J Richarme G 《Biochemical and biophysical research communications》2003,301(2):430-436
We have cloned, purified to homogeneity, and characterized as a molecular chaperone the Escherichia coli YedU protein. The purified protein shows a single band at 31 kDa on SDS-polyacrylamide gels and forms dimers in solution. Like other chaperones, YedU interacts with unfolded and denatured proteins. It promotes the functional folding of citrate synthase and alpha-glucosidase after urea denaturation and prevents the aggregation of citrate synthase under heat shock conditions. YedU forms complexes with the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. In contrast to DnaK/Hsp70, ATP does not stimulate YedU-dependent citrate synthase renaturation and does not affect the interaction between YedU and unfolded proteins, and YedU does not display any peptide-stimulated ATPase activity. We conclude that YedU is a novel chaperone which functions independently of an ATP/ADP cycle. 相似文献
4.
Various physiological and pathological conditions generate an accumulation of misfolded proteins in the endoplasmic reticulum (ER). This results in ER stress followed by a cellular response to cope with this stress and restore homeostasis: the unfolded protein response (UPR). Overall, the UPR leads to general translational arrest and the induction of specific factors to ensure cell survival or to mediate cell death if the stress is too severe. In multiple cancers, components of the UPR are overexpressed, indicating increased dependence on the UPR. In addition, the UPR can confer resistance to anti-cancer treatment. Therefore, modification of the UPR should be explored for its anti-cancer properties. This review discusses factors associated with the UPR that represent potential therapeutic targets. 相似文献
5.
Mihye Lee Sang Kyoo Paik Min-Jung Lee Yoon-Jung Kim Sungdae Kim Minyeop Nahm Soo-Jin Oh Hyun-Man Kim Jeongbin Yim C. Justin Lee Yong Chul Bae Seungbok Lee 《Developmental biology》2009,330(2):250-262
Hereditary spastic paraplegia (HSP) is an inherited neurological disorder characterized by progressive spasticity and weakness of the lower extremities. The most common early-onset form of HSP is caused by mutations in the human gene that encodes the dynamin-family GTPase Atlastin-1 (Atl-1). Recently, loss of the Drosophila ortholog of Atl-1 (Atl) has been found to induce locomotor impairments from the earliest adult stages, suggesting the developmental role of atlastin-subfamily GTPases. Here, we provide evidence that Atl is required for normal growth of muscles and synapses at the neuromuscular junction (NMJ). Atl protein is highly expressed in larval body-wall muscles. Loss-of-function mutations in the atl gene reduce the size of muscles and increase the number of synaptic boutons. Rescue of these defects is accomplished by muscular, but not neuronal expression of Atl. Loss of Atl also disrupts ER and Golgi morphogenesis in muscles and reduces the synaptic levels of the scaffold proteins Dlg and α-spectrin. We also provide evidence that Atl functions with the microtubule-severing protein Spastin to disassemble microtubules in muscles. Finally, we demonstrate that the microtubule-destabilizing drug vinblastine alleviates synapse and muscle defects in atl mutants. Together, our results suggest that Atl controls synapse development and ER and Golgi morphogenesis by regulating microtubule stability. 相似文献
6.
Viral glycoproteins fold and oligomerize in the endoplasmic reticulum of the host cell. They employ the cellular machinery and receive assistance from cellular folding factors. During the folding process, they are retained in the compartment and their structural quality is checked by the quality control system of the endoplasmic reticulum. A special characteristic that distinguishes viral fusion proteins from most cellular proteins is the extensive conformational change they undergo during fusion of the viral and cellular membrane. Many viral proteins fold in conjunction with and dependent on a viral partner protein, sometimes even synthesized from the same mRNA. Relevant for folding is that viral glycoproteins from the same or related virus families may consist of overlapping sets of domain modules. The consequences of these features for viral protein folding are at the heart of this review. 相似文献
7.
The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress 总被引:23,自引:0,他引:23
Lee AS 《Methods (San Diego, Calif.)》2005,35(4):373-381
8.
Yoshinori Kashiwayama Midori Seki Akina Yasui Masashi Morita Masao Sakaguchi Tsuneo Imanaka 《Experimental cell research》2009,315(2):190-557
70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) is a member of ATP-binding cassette (ABC) protein subfamily D. ABC subfamily D proteins are also known as peroxisomal ABC proteins. Therefore, P70R is thought to be a peroxisomal membrane protein. However, the subcellular localization of P70R is not extensively investigated. In this study, we transiently expressed P70R in fusion with HA (P70R-HA) in CHO cells and examined subcellular localization by immunofluorescence. Surprisingly, P70R-HA was localized to the endoplasmic reticulum (ER), not to peroxisomes. To examine the ER-targeting property of P70R, we expressed various NH2-terminal deletion constructs of P70R. Among the NH2-terminal deletion constructs, mutant proteins starting with hydrophobic transmembrane segment (TMS) were localized to ER, but the ones containing the NH2-terminal hydrophilic cytosolic domain were not. ABC subfamily D proteins destined for peroxisomes have NH2-terminal hydrophilic region adjacent to TMS1. However, only P70R lacks the region and is translated with NH2-terminal hydrophobic TMS1. Furthermore, attachment of the NH2-terminal hydrophilic domain to the NH2-terminus of P70R excluded P70R from the ER-targeting pathway. These data suggest that P70R resides in the ER but not the peroxisomal membranes, and the hydrophobic property of NH2-terminal region determines the subcellular localization of ABC subfamily D proteins. 相似文献
9.
Pig brain microsomes catalyzed the enzymatic transfer of radiolabeled isoprenyl groups from [1-14C]isopentenyl pyrophosphate [( 1-14C]I-P-P) into long-chain polyisoprenyl pyrophosphates (Poly-P-P) and unidentified neutral lipids. The brain isoprenyltransferase activity synthesizing the Poly-P-P (1) required 5 mM Mg2+ and 10 mM vanadate ions for maximal activity; (2) exhibited an apparent Km of 8 microM for I-P-P; (3) utilized exogenous farnesyl pyrophosphate and two stereoisomers of geranylgeranyl pyrophosphate as substrates; (4) was optimal at pH 8.5; and (5) was stimulated by dithiothreitol. The major products were identified as C90 and C95 allylic Poly-P-P on the basis of the following chemical and chromatographic properties: (1) the intact product co-chromatographed with authentic Poly-P-P on silica-gel-impregnated paper; (2) the major product was converted to a compound chromatographically identical to polyisoprenyl monophosphate (Poly-P) by alkaline hydrolysis; (3) treatment of the labeled Poly-P with wheat germ acid phosphatase or mild acid yielded neutral labeled products; (4) the KOH hydrolyzed product coeluted with authentic Poly-P from lipophilic Sephadex LH-20; and (5) the labeled lipids produced by enzymatic dephosphorylation had mobilities identical to fully unsaturated polyisoprenols containing 18 (C90) and 19 (C95) isoprene units when analyzed by reverse-phase chromatography. When subcellular fractions from rat brain gray matter were compared, the highest specific activity was found in the heavy microsomes. These results demonstrate that brain contains an isoprenyltransferase activity, associated with the rough endoplasmic reticulum, capable of synthesizing long-chain Poly-P-P. The enzymatic reactions by which the Poly-P-P intermediate is converted to dolichyl phosphate remain to be elucidated. 相似文献
10.
Julianne H. Grose Kelsey Langston Xiaohui Wang Shayne Squires Soumyajit Banerjee Mustafi Whitney Hayes Jonathan Neubert Susan K. Fischer Matthew Fasano Gina Moore Saunders Qiang Dai Elisabeth Christians E. Douglas Lewandowski Peipei Ping Ivor J. Benjamin 《PloS one》2015,10(10)
Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 “cardiac interactome” to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to speculate that small molecule activators of HspB2 might be deployed to mitigate mitochondrial related diseases such as cardiomyopathy and neurodegenerative disease. 相似文献
11.
A novel function of VCP (valosin-containing protein; p97) in the control of N-glycosylation of proteins in the endoplasmic reticulum 总被引:1,自引:0,他引:1
Lass A McConnell E Nowis D Mechref Y Kang P Novotny MV Wójcik C 《Archives of biochemistry and biophysics》2007,462(1):62-73
alpha-Chain of T-cell receptor (TCR) is a typical ERAD (ER-associated degradation) substrate degraded in the absence of other TCR subunits. Depletion of derlin 1 fails to induce accumulation of alphaTCR despite inducing accumulation of alpha1-antitrypsin, another ERAD substrate. Furthermore, while depletion of VCP does not affect levels of alpha1-antitrypsin, it induces an increase in levels of alphaTCR. RNAi of VCP induces preferential accumulation of alphaTCR with less mannose residues, suggesting its retention within the ER. Mass spectrometric analysis of cellular N-linked glycans revealed that depletion of VCP decreases the level of high-mannose glycoproteins, increases the levels of truncated low-mannose glycoproteins and induces changes in the abundance of complex glycans assembled in post-ER compartments. Since proteasome inhibition was unable to mimic those changes, they cannot be regarded as a simple consequence of inhibited ERAD but represent a complex effect of VCP on the function of the ER. 相似文献
12.
Summary The osmium-ligand binding technique and scanning electron microscopy have been applied to the study of the three-dimensional organization of mesocarp cells of a mature avocado fruit. Using this approach the mitochondria of the cells appear as elongated, branching structures and the endoplasmic reticulum consists of a complex of tubular strands, vesiculated strands and lamellar sheets. Associations of the endoplasmic reticulum with other organelles are also apparent. It is suggested that this approach provides a valuable means to assess the structural transitions in cell organization that occur during development or with functional changes. 相似文献
13.
Strøm TB Tveten K Holla ØL Cameron J Berge KE Leren TP 《Biochemical and biophysical research communications》2011,415(4):642-645
Newly synthesized low density lipoprotein receptors (LDLRs) exit the endoplasmic reticulum (ER) as the first step in the secretory pathway. In this study we have generated truncating deletions and substitutions within the 50 amino acid cytoplasmic domain of the LDLR in order to identify residues required for the exit from the ER. Western blot analysis was used to determine the relative amounts of the 120 kDa precursor form of the LDLR located in the ER and the 160 kDa mature form that has exited the ER. These studies have shown that the exit of an LDLR lacking the cytoplasmic domain, is markedly reduced. Moreover, the longer the cytoplasmic domain, the more efficient is the exit from the ER. At least 30 residues were required for the LDLR to efficiently exit the ER. Mutations in the two di-acidic motifs ExE814 and/or ExD837 had only a small effect on the exit from the ER. The requirement for a certain length of the cytoplasmic domain for efficient exit from the ER, could reflect the distance needed to interact with the COPII complex of the ER membrane or the requirement for the LDLR to undergo dimerization. 相似文献
14.
The unfolded protein response in human corneal endothelial cells following hypothermic storage: implications of a novel stress pathway 总被引:1,自引:0,他引:1
Human corneal endothelial cells (HCEC) have become increasingly important for a range of eye disease treatment therapies. Accordingly, a more detailed understanding of the processing and preservation associated stresses experienced by corneal cells might contribute to improved therapeutic outcomes. To this end, the unfolded protein response (UPR) pathway was investigated as a potential mediator of corneal cell death in response to hypothermic storage. Once preservation-induced failure had begun in HCECs stored at 4 °C, it was noted that necrosis accounted for the majority of cell death but with significant apoptotic involvement, peaking at several hours post-storage (4–8 h). Western blot analysis demonstrated changes associated with apoptotic activation (caspase 9, caspase 3, and PARP cleavage). Further, the activation of the UPR pathway was observed through increased and sustained levels of ER folding and chaperone proteins (Bip, PDI, and ERO1-Lα) in samples experiencing significant cell death. Modulation of the UPR pathway using the specific inhibitor, salubrinal, resulted in a 2-fold increase in cell survival in samples experiencing profound cold-induced failure. Furthermore, this increased cell survival was associated with increased membrane integrity, cell attachment, and decreased necrotic cell death populations. Conversely, addition of the UPR inducer, tunicamycin, during cold exposure resulted in a significant decrease in HCEC survival during the recovery period. These data implicate for the first time that this novel cell stress pathway may be activated in HCEC as a result of the complex stresses associated with hypothermic exposure. The data suggest that the targeted control of the UPR pathway during both processing and preservation protocols may improve cell survival and function of HCEC thus improving the clinical utility of these cells as well as whole human corneas. 相似文献
15.
Integral membrane proteins of the nuclear envelope (NE) are synthesized on the rough endoplasmic reticulum (ER) and following free diffusion in the continuous ER/NE membrane system are targeted to their proper destinations due to interactions of specific domains with other components of the NE. By studying the intracellular distribution and dynamics of a deletion mutant of an integral membrane protein of the nuclear pores, POM121, which lacks the pore-targeting domain, we investigated if ER retention plays a role in sorting of integral membrane proteins to the nuclear envelope. A nascent membrane protein lacking sorting determinants is believed to diffuse laterally in the continuous ER/NE lipid bilayer and expected to follow vesicular traffic to the plasma membrane. The GFP-tagged deletion mutant, POM121(1-129)-GFP, specifically distributed within the ER membrane, but was completely absent from the Golgi compartment and the plasma membrane. Experiments using fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) demonstrated that despite having very high mobility within the whole ER network (D = 0.41 +/- 0.11 micro m(2)/s) POM121(1-129)-GFP was unable to exit the ER. It was also not detected in post-ER compartments of cells incubated at 15 degrees C. Taken together, these experiments show that amino acids 1-129 of POM121 are able to retain GFP in the ER membrane and suggest that this retention occurs by a direct mechanism rather than by a retrieval mechanism. Our data suggest that ER retention might be important for sorting of POM121 to the nuclear pores. 相似文献
16.
Pretaporter,a Drosophila protein serving as a ligand for Draper in the phagocytosis of apoptotic cells
下载免费PDF全文

Yukiko Nakagawa Kaz Nagaosa Yumi Hashimoto Takashi Ishimoto Takeshi Moki Yu Fujita Hiroshi Nakayama Naoshi Dohmae Akiko Shiratsuchi Naoko Yamamoto Koichi Ueda Masamitsu Yamaguchi Takeshi Awasaki Yoshinobu Nakanishi 《The EMBO journal》2009,28(24):3868-3878
Phagocytic removal of cells undergoing apoptosis is necessary for animal development and tissue homeostasis. Draper, a homologue of the Caenorhabditis elegans phagocytosis receptor CED‐1, is responsible for the phagocytosis of apoptotic cells in Drosophila, but its ligand presumably present on apoptotic cells remains unknown. An endoplasmic reticulum protein that binds to the extracellular region of Draper was isolated. Loss of this protein, which we name Pretaporter, led to a reduced level of apoptotic cell clearance in embryos, and the overexpression of pretaporter in the mutant flies rescued this defect. Results from genetic analyses suggested that Pretaporter functionally interacts with Draper and the corresponding signal mediators. Pretaporter was exposed at the cell surface after the induction of apoptosis, and cells artificially expressing Pretaporter at their surface became susceptible to Draper‐mediated phagocytosis. Finally, the incubation with Pretaporter augmented the tyrosine‐phosphorylation of Draper in phagocytic cells. These results collectively suggest that Pretaporter relocates from the endoplasmic reticulum to the cell surface during apoptosis to serve as a ligand for Draper in the phagocytosis of apoptotic cells. 相似文献
17.
Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole 总被引:7,自引:0,他引:7
To understand how plant cells exert quality control over the proteins that pass through the secretory system we examined the transport and accumulation of the bean (Phaseolus vulgaris L.) vacuolar storage protein phaseolin, structurally modified to contain a helix-breaking epitope and carboxyterminal HDEL, an endoplasmic reticulum (ER)-retention signal. The constructs were expressed in tobacco (Nicotiana tabacum L.) with a seedspecific promoter. The results show that phaseolin-HDEL accumulates in the protein-storage vacuoles, indicating that HEDL does not contain sufficient information for retention in the ER. However, the ER of seeds expressing the phaseolin-HDEL construct contain relatively more phaseolin-HDEL compared to phaseolin in the ER of seeds expressing the phaseolin construct. This result indicates that the flow out of the ER is retarded but not arrested by the presence of HDEL. Introduction into phaseolin of the epitope himet (Hoffman et al., 1988, Plant Mol. Biol. 11, 717–729) greatly reduces the accumulation of HiMet phaseolin compared to normal phaseolin. However, the increased abundance within the ER is similar for both phaseolin-HDEL and HiMet phaseolin-HDEL. Using immunocytochemistry with specific antibodies, HiMet phaseolin was found in the ER, the Golgi stack, and in transport vesicles indicating that it was transport competent. It was also present at an early stage of seed development in the protein-storage vacuoles, but was not found there at later stages of seed development. Together these results support the conclusion that the HiMet epitope did not alter the structure of the protein sufficiently to make it transport incompetent. However, the protein was sufficiently destabilized to be degraded by vacuolar proteases.Abbreviations ER
endoplasmic reticulum
- BiP
binding protein
- IgG
immunoglobulin G
- Mr
relative molecular mass
The mention of vendor or product does not imply that they are endorsed or recommended by the US Department of Agriculture over vendors of similar products not mentionedThis work was supported by a grant from the National Science Foundation (Cell Biology) to M.J. Chrispeels and a fellowship from the Ministry of Education and Science, Spain-Fullbright Program to J.J. Pueyo. We thank H. Pelham for a gift of the constructs containing c-myc-SEKDEL and cmyc-FEHDEL and for a gift of anti-HDEL monoclonal antibodies. The original HiMet phaseolin construct was made by L. Hoffman and the phaseolin-HDEL or KDEL and HiMet-HDEL or KDEL constructs were made by D. Hunt as part of his doctoral research. 相似文献
18.
Margeta-Mitrovic M 《Methods (San Diego, Calif.)》2002,27(4):35122-317
Assembly-dependent trafficking is a property of many multimeric membrane protein complexes; this coupling of assembly and trafficking processes provides an important cellular quality control mechanism, ensuring that only properly folded and assembled complexes are expressed on the cell surface. In all membrane protein complexes whose trafficking is known to be assembly-dependent, at least one of the subunits contains an endoplasmic reticulum (ER) retention/retrieval signal that is shielded on subunit assembly, allowing the assembled protein complex to traffic to the plasma membrane. Under these conditions, presence of the normally retained subunit on the cell surface can be used as an indirect index of protein assembly in the ER. In this article, I describe the design of two complementary approaches (trafficking enhancement and trap assays) that can be used separately or in combination to determine whether two (or more) proteins assemble in the ER, i.e., whether they constitutively oligomerize. Both of the approaches are based on the measurement of plasma membrane-expressed proteins using antibody-mediated detection of extracellularly expressed epitopes and subsequent luminometric quantification. These methods provide a straightforward and relatively inexpensive way to assess protein-protein interactions early in the synthetic pathway. 相似文献
19.
M. J. Robbins F. Ciruela A. Rhodes R. A. J. McIlhinney 《Journal of neurochemistry》1999,72(6):2539-2547
The metabotropic glutamate receptor mGluR1alpha in membranes isolated both from rat brain and from cell lines transfected with cDNA coding for the receptor migrates as a disulphide-bonded dimer on sodium dodecyl sulphate-polyacrylamide gels. Dimerization of mGluR1alpha takes place in the endoplasmic reticulum because it is not prevented by exposing transfected human embryonic kidney (HEK) 293 cells to the drug brefeldin A, a drug that prevents egress of proteins from the endoplasmic reticulum. Dimerization was also not dependent on protein glycosylation as it was not prevented by treatment of the cells with tunicamycin. Using a mammalian expression vector containing the N-terminal domain of mGluR1alpha, truncated just before the first transmembrane domain (NT-mGluR1alpha), we show that the N-terminal domain is secreted as a soluble disulphide-bonded dimeric protein. In addition, the truncated N-terminal domain can form heterodimers with mGluR1alpha when both proteins are cotransfected into HEK 293 cells. However, mGluR1alpha and its splice variant mGluR1beta did not form heterodimers in doubly transfected HEK 293 cells. These results show that although the N-terminal domain of mGluR1alpha is sufficient for dimer formation, other domains in the molecule must regulate the process. 相似文献
20.
Production of recombinant proteins in mammalian cells is a successful technology that delivers protein pharmaceuticals for
therapies and for diagnosis of human disorders. Cost effective production of protein biopharmaceuticals requires extensive
optimization through cell and fermentation process engineering at the upstream and chemical engineering of purification processes
at the downstream side of the production process. The majority of protein pharmaceuticals are secreted proteins. Accumulating
evidence suggests that the folding and processing of these proteins in the endoplasmic reticulum (ER) is a general rate- and
yield limiting step for their production. We will summarize our knowledge of protein folding in the ER and of signal transduction
pathways activated by accumulation of unfolded proteins in the ER, collectively called the unfolded protein response (UPR).
On the basis of this knowledge we will evaluate engineering approaches to increase cell specific productivities through engineering
of the ER-resident protein folding machinery and of the UPR. 相似文献