首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C(4) monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C(4) photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C(3), C(3)-C(4), C(4)-like, and C(4) species of the dicot genus Flaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C(4)-like and C(4) species than in C(3) and C(3)-C(4) species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C(4) species Flaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C(4) plants and therefore is neither a prerequisite nor a consequence of C(4) photosynthesis.  相似文献   

5.
In the most common C4 pathway for carbon fixation, an NADP-malic enzyme (NADP-ME) decarboxylates malate in the chloroplasts of bundle sheath cells. Isoforms of plastidic NADP-ME are encoded by two genes in all species of Flaveria, including C3, C3-C4 intermediate, and C4 types. However, only one of these genes, ChlMe1, encodes the enzyme that functions in the C4 pathway. We compared the expression patterns of the ChlMe1 and ChlMe2 genes in developing leaves of Flaveria pringlei (C3) and Flaveria trinervia (C4) and in transgenic Flaveria bidentis (C4). ChlMe1 expression in C4 species increases in leaves with high C4 pathway activity. In the C3 species F. pringlei, ChlMe1 expression is transient and limited to early leaf development. In contrast, ChlMe2 is expressed in C3 and C4 species concurrent with stages in chloroplast biogenesis. Because previous studies suggest that NADP-ME activities generally reflect the level of its mRNA abundance, we discuss possible roles of ChlMe1 and ChlMe2 based on these expression patterns.  相似文献   

6.
B McGonigle  T Nelson 《Plant physiology》1995,108(3):1119-1126
In C4 plants of the NADP-malic enzyme type, an abundant, mesophyll cell-localized NADP-malate dehydrogenase (MDH) acts to convert oxaloacetate, the initial product of carbon fixation, to malate before it is shuttled to the bundle sheath. Since NADP-MDH has different but important roles in leaves of C3 and C4 plants, we have cloned and characterized a nearly full-length cDNA encoding NADP-MDH from Flaveria trinervia (C4) to permit comparative structure/expression studies within the genus flaveria. The dicot genus Flaveria includes C3-C4 intermediate species, as well as C3 and C4 species. We show that the previously noted differences in NADP-MDH activity levels among C3, C4, and C3-C4 Flaveria species are in part due to interspecific differences in mRNA accumulation. We also show that the NADP-MDH gene appears to be present as a single copy among different Flaveria species, suggesting that a pre-existing gene has been reregulated during the evolution from C3 to C4 plants to accommodate the abundance and localization requirements of the C4 cycle.  相似文献   

7.
Kranz anatomy and C(4) vein pattern are required for C(4) biochemical functioning in C(4) plants; however, the evolutionary timing of anatomical and biochemical adaptations is unknown. From the genus Flaveria, 16 species (C(3), C(4), intermediates [C(3)-C(4), C(4)-like]) were analyzed, novel anatomical and vein pattern characters were analyzed and key anatomical differences among photosynthetic groups were highlighted. A stepwise acquisition of anatomical and vein pattern traits prior to derived biochemistry was outlined on the basis of the phylogeny of Flaveria. Increased vein density represents a potential "precondition" contributing to lower ratios of photosynthetic tissues (mesophyll, bundle sheath) and precedes further anatomical and biochemical modifications observed in derived C(3)-C(4) intermediates. In derived Flaveria species, bundle sheath volume is modified through cell expansion, whereas mesophyll volume is altered through mesophyll cell expansion, reductions in the number of ground tissue layers, and increased vein density. Results demonstrated that key anatomical features of C(4) plants are also required for C(3)-C(4) biochemical intermediacy, and anatomical and biochemical alterations acquired during evolution of intermediacy may predispose a species for evolution of C(4) photosynthesis. C(4)-like species are similar to C(4) species, demonstrating that Kranz anatomy is fully evolved before complete C(4) biochemistry is achieved.  相似文献   

8.
In Flaveria trinervia (Asteraceae) seedlings, light-induced signals are required for differentiation of cotyledon bundle sheath cells and mesophyll cells and for cell-type-specific expression of Rubisco small subunit genes (bundle sheath cell specific) and the genes that encode pyruvate orthophosphate dikinase and phosphoenolpyruvate carboxylase (mesophyll cell specific). Both cell type differentiation and cell-type-specific gene expression were complete by d 7 in light-grown seedlings, but were arrested beyond d 4 in dark-grown seedlings. Our results contrast with those found for another C(4) dicot, Amaranthus hypochondriacus, in which light was not required for either process. The differences between the two C(4) dicot species in cotyledon cell differentiation may arise from differences in embryonic and post-embryonic cotyledon development. Our results illustrate that a common C(4) photosynthetic mechanism can be established through different developmental pathways in different species, and provide evidence for independent evolutionary origins of C(4) photosynthetic mechanisms within dicotyledonous plants.  相似文献   

9.
We compared the structural, biochemical, and physiological characteristics involved in photorespiration of intergeneric hybrids differing in genome constitution (DtDtR, DtDtRR, and DtRR) between the C(3)-C(4) intermediate species Diplotaxis tenuifolia (DtDt) and the C(3) species radish (Raphanus sativus; RR). The bundle sheath (BS) cells in D. tenuifolia included many centripetally located chloroplasts and mitochondria, but those of radish had only a few chloroplasts and mitochondria. In the hybrids, the numbers of chloroplasts and mitochondria, the ratio of centripetally located organelles to total organelles, and the mitochondrial size in the BS cells increased with an increase in the constitution ratio of the Dt:R genome. The P-protein of glycine decarboxylase (GDC) was confined to the BS mitochondria in D. tenuifolia, whereas in radish, it accumulated more densely in the mesophyll than in the BS mitochondria. In the hybrids, more intense accumulation of GDC in the BS relative to the mesophyll mitochondria occurred with an increase in the Dt:R ratio. These structural and biochemical features in the hybrids were reflected in the gas exchange characteristics of leaves, such as the CO(2) compensation point. Our data indicate that the leaf structure, the intercellular pattern of GDC expression, and the gas exchange characteristics of C(3)-C(4) intermediate photosynthesis are inherited in the hybrids depending on the constitution ratio of the parent genomes. Our findings also demonstrate that the apparent reduced photorespiration in C(3)-C(4) intermediate plants is mainly due to the structural differentiation of mitochondria and chloroplasts in the BS cells combined with the BS-dominant expression of GDC.  相似文献   

10.
Alloteropsis semialata (R. Br.) Hitchcock includes both C3 and C4 subspecies: the C3 subspecies eckloniana and the C4 subspecies semialata. We examined the leaf structural and photosynthetic characteristics of these plants. A. semialata ssp. semialata showed high activities of photosynthetic enzymes involved in phosphoenolpyruvate carboxykinase-type C4 photosynthesis and an anomalous Kranz anatomy. Phosphoenolpyruvate carboxylase; pyruvate, Pi dikinase and glycine decarboxylase (GDC) were compartmentalized between the mesophyll (M) and inner bundle sheath cells, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) occurred in both cells. A. semialata ssp. eckloniana also showed an anomalous non-Kranz anatomy, in which the mestome sheath cells included abundant chloroplasts and mitochondria. Rubisco and GDC accumulated densely in the M and mestome sheath cells, whereas the levels of C4 enzymes were low. The activity levels of photo-respiratory enzymes in both subspecies were intermediate between those in typical C3 and C4 plants. The values of CO2 compensation points in A. semialata ssp. semialata were within the C4 range, whereas those in A. semialata ssp. eckloniana were somewhat lower than the C3 range. These data suggest that the plants are C3-like and C4-like but not typical C3 and C4, and when integrated with previous findings, point to important variability in the expression of C4 physiology in this species complex. A. semialata is therefore an intriguing grass species with which to study the evolutionary linkage between C3 and C4 plants.  相似文献   

11.
12.
The Gly decarboxylase complex (GDC) is abundant in mitochondria of C3 leaves and functions in photorespiratory carbon recovery. However, expression of GDC component proteins has generally been less evident in non-green tissues. Here we report an aspen (Populus tremuloides Michx.) PtgdcH1 gene, encoding a GDC subunit H-protein that is phylogenetically distinct from previously characterized photorespiratory H-proteins. Strong expression of PtgdcH1 in root tips and developing xylem suggests that GDC supports a very active C1 metabolism in non-photosynthetic tissues of aspen.  相似文献   

13.
Yoshimura Y  Kubota F  Ueno O 《Planta》2004,220(2):307-317
In C4 plants, photorespiration is decreased relative to C3 plants. However, it remains unclear how much photorespiratory capacity C4 leaf tissues actually have. We thoroughly investigated the quantitative distribution of photorespiratory organelles and the immunogold localization of the P protein of glycine decarboxylase (GDC) in mesophyll (M) and bundle sheath (BS) cells of various C4 grass species. Specific differences occurred in the proportions of mitochondria and peroxisomes in the BS cells (relative to the M cells) in photosynthetic tissues surrounding a vein: lower in the NADP-malic enzyme (NADP-ME) species having poorly formed grana in the BS chloroplasts, and higher in the NAD-malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) species having well developed grana. In all C4 species, GDC was localized mainly in the BS mitochondria. When the total amounts of GDC in the BS mitochondria per unit leaf width were estimated from the immunogold labeling density and the quantity of mitochondria, the BSs of NADP-ME species contained less GDC than those of NAD-ME or PCK species. This trend was also verified by immunoblot analysis of leaf soluble protein. There was a high positive correlation between the degree of granal development (granal index) in the BS chloroplasts and the total amount of GDC in the BS mitochondria. The variations in the structural and biochemical features involved in photorespiration found among C4 species might reflect differences in the O2/CO2 partial pressure and in the potential photorespiratory capacity of the BS cells.Abbreviations BS Bundle sheath - GDC Glycine decarboxylase - M Mesophyll - NAD-ME NAD-malic enzyme - NADP-ME NADP-malic enzyme - PCK Phosphoenolpyruvate carboxykinase  相似文献   

14.
The efficient functioning of C4 photosynthesis requires the strict compartmentation of a suite of enzymes in either mesophyll or bundle sheath cells. To determine the mechanism controlling bundle sheath cell-specific expression of the NADP-malic enzyme, we made a set of chimeric constructs using the 5[prime] and 3[prime] regions of the Flaveria bidentis Me1 gene fused to the [beta]-glucuronidase gusA reporter gene. The pattern of GUS activity in stably transformed F. bidentis plants was analyzed by histochemical and cell separation techniques. We conclude that the 5[prime] region of Me1 determines bundle sheath specificity, whereas the 3[prime] region contains an apparent enhancer-like element that confers high-level expression in leaves. The interaction of 5[prime] and 3[prime] sequences was dependent on factors that are present in the C4 plant but not found in tobacco.  相似文献   

15.
This review considers aspects of the structure and functions of the parenchymatous bundle sheath that surrounds the veins in the leaves of many C(3) plants. It includes a discussion of bundle sheath structure and its related structures (bundle sheath extensions and the paraveinal mesophyll), its relationship to the mestome sheath in some grasses, and its chloroplast content. Its metabolic roles in photosynthesis, carbohydrate synthesis and storage, the import and export of nitrogen and sulphur, and the metabolism of reactive oxygen species are discussed and are compared with the role of the bundle sheath in leaves of C(4) plants. Its role as an interface between the vasculature and the mesophyll is considered in relation to the movement of water and assimilates during leaf development, export of photosynthates, and senescence.  相似文献   

16.
Transgenic Flaveria bidentis (a C4 species) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were used to examine the relationship between the CO2 assimilation rate, Rubisco content, and carbon isotope discrimination. Reduction in the amount of Rubisco in the transgenic plants resulted in reduced CO2 assimilation rates and increased carbon isotope discrimination of leaf dry matter. The H2O exchange was similar in transgenic and wild-type plants, resulting in higher ratios of intercellular to ambient CO2 partial pressures. Carbon isotope discrimination was measured concurrently with CO2 and H2O exchange on leaves of the control plants and T1 progeny with a 40% reduction in Rubisco. From the theory of carbon isotope discrimination in the C4 species, we conclude that the reduction in the Rubisco content in the transgenic plants has led to an increase in bundle-sheath CO2 concentration and CO2 leakage from the bundle sheath; however, some down-regulation of the C4 cycle also occurred.  相似文献   

17.
18.
19.
The function of the C4 mechanism of photosynthesis depends on the strict compartmentation of the enzymes involved. Here, we investigate the regulatory mechanisms that ensure the mesophyll-specific expression of the C4 isoform of phosphoenolpyruvate carboxylase. We show that 2 kb of the 5[prime] flanking region of the Flaveria trinervia C4 PpcA1 gene is sufficient to direct mesophyll-specific expression of the [beta]-glucuronidase reporter gene in transgenic F. bidentis (C4) plants. In young leaves of seedlings, the activity of this promoter is dependent on the developmental stage of the mesophyll cells. It is induced in a basipetal fashion (leaf tip to base) during leaf development. The promoter region of the orthologous nonphotosynthetic Ppc gene of F. pringlei (C3) induces reporter gene expression mainly in the vascular tissue of leaves and stems as well as in mesophyll cells of transgenic F. bidentis plants. Our experiments demonstrate that during the evolution of the C4 Flaveria species, cis-acting elements of the C4 Ppc gene must have been altered to achieve mesophyll-specific expression.  相似文献   

20.
The small subunit of ribulose-bisphosphate carboxylase (Rubisco), encoded by rbcS, is essential for photosynthesis in both C3 and C4 plants, even though the cell specificity of rbcS expression is different between C3 and C4 plants. The C3 rbcS is specifically expressed in mesophyll cells, while the C4 rbcS is expressed in bundle sheath cells, and not mesophyll cells. Two chimeric genes were constructed consisting of the structural gene encoding -glucuronidase (GUS) controlled by the two promoters from maize (C4) and rice (C3) rbcS genes. These constructs were introduced into a C4 plant, maize. Both chimeric genes were specifically expressed in photosynthetic organs, such as leaf blade, but not in non-photosynthetic organs. The expressions of the genes were also regulated by light. However, the rice promoter drove the GUS activity mainly in mesophyll cells and relatively low in bundle sheath cells, while the maize rbcS promoter induced the activity specifically in bundle sheath cells. These results suggest that the rice promoter contains some cis-acting elements responding in an organ-pecific and light-inducible regulation manner in maize but does not contain element(s) for bundle sheath cell-specific expression, while the maize promoter does contain such element(s). Based on this result, we discuss the similarities and differences between the rice (C3) and maize (C4) rbcS promoter in terms of the evolution of the C4 photosynthetic gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号