首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Calpastatin, the endogenous inhibitor of calpain, is an intrinsically unstructured protein proposed to undergo folding transitions upon binding to the enzyme. As this feature has never been experimentally tested, we have set out to characterize the conformation of two peptides corresponding to its conserved subdomains, A and C, known to interact with calpain in a Ca(2+)-dependent manner. The peptides are disordered in water but show a high propensity for alpha-helical conformation in the presence of trifluoroethanol. The conformational transition is sensitive to Ca(2+), and is clearly seen upon binding of the peptides to the enzyme. Secondary-structure prediction of all calpastatin sequences shows that the helix-forming potential within these regions is a conserved feature of the inhibitor. Furthermore, quantitative data on the binding strength of calpastatin fragments reveal that binding of the inhibitor is accompanied by a large decrease in its configurational entropy. Taken together, these observations point to significant binding-induced local folding transitions in calpastatin, in a way that ensures highly specific, yet reversible, action of the inhibitor.  相似文献   

2.
    
Protein–protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein–protein recognition mechanism, mediated by disordered regions longer than 20–30 residues. Bioinformatics predictions and well‐characterized examples, such as the kinase‐inhibitory domain of Cdk inhibitors and the Wiskott–Aldrich syndrome protein (WASP)‐homology domain 2 of actin‐binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.  相似文献   

3.
    
The connexin carboxyl‐terminal (CxCT) domain plays a role in the trafficking, localization, and turnover of gap junction channels, as well as the level of gap junction intercellular communication via numerous post‐translational modifications and protein–protein interactions. As a key player in the regulation of gap junctions, the CT presents itself as a target for manipulation intended to modify function. Specific to intrinsically disordered proteins, identifying residues whose secondary structure can be manipulated will be critical toward unlocking the therapeutic potential of the CxCT domain. To accomplish this goal, we used biophysical methods to characterize CxCT domains attached to their fourth transmembrane domain (TM4). Circular dichroism and nuclear magnetic resonance were complementary in demonstrating the connexin isoforms that form the greatest amount of α‐helical structure in their CT domain (Cx45 > Cx43 > Cx32 > Cx50 > Cx37 ≈ Cx40 ≈ Cx26). Studies compared the influence of 2,2,2‐trifluoroethanol, pH, phosphorylation, and mutations (Cx32, X‐linked Charcot‐Marie Tooth disease; Cx26, hearing loss) on the TM4‐CxCT structure. While pH modestly influences the CT structure, a major structural change was associated with phosphomimetic substitutions. Since most connexin CT domains are phosphorylated throughout their life cycle, studies of phospho‐TM4‐CxCT isoforms will be critical toward understanding the role that structure plays in regulating gap junction function. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 143–162, 2016.  相似文献   

4.
    
Ellen V. Hackl 《Biopolymers》2014,101(6):591-602
Natively unfolded (intrinsically disordered (ID) proteins) have been attracting an increasing attention due to their involvement in many regulatory processes. Natively unfolded proteins can fold upon binding to their metabolic partners. Coupled folding and binding events usually involve only relatively short motifs (binding motifs). These binding motifs which are able to fold should have an increased propensity to form a secondary structure. The aim of the present work was to probe the conformation of the intrinsically disordered protein 4E‐BP1 in the native and partly folded states by limited proteolysis and to reveal regions with a high propensity to form an ordered structure. Trifuoroethanol (TFE) in low concentrations (up to 15 vol%) was applied to increase the helical population of protein regions with a high intrinsic propensity to fold. When forming helical structures, these regions lose mobility and become more protected from proteases than random/unfolded protein regions. Limited proteolysis followed by mass spectrometry analysis allows identification of the regions with decreased mobility in TFE solutions. Trypsin and V8 proteases were used to perform limited proteolysis of the 4E‐BP1 protein in buffer and in solutions with low TFE concentrations at 37°C and at elevated temperatures (42 and 50°C). Comparison of the results obtained with the previously established 4E‐BP1 structure and the binding motif illustrates the ability of limited proteolysis in the presence of a folding assistant (TFE) to map the regions with high and low propensities to form a secondary structure revealing potential binding motifs inside the intrinsically disordered protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 591–602, 2014.  相似文献   

5.
6.
  总被引:6,自引:0,他引:6  
Comparisons were made among four categories of protein flexibility: (1) low-B-factor ordered regions, (2) high-B-factor ordered regions, (3) short disordered regions, and (4) long disordered regions. Amino acid compositions of the four categories were found to be significantly different from each other, with high-B-factor ordered and short disordered regions being the most similar pair. The high-B-factor (flexible) ordered regions are characterized by a higher average flexibility index, higher average hydrophilicity, higher average absolute net charge, and higher total charge than disordered regions. The low-B-factor regions are significantly enriched in hydrophobic residues and depleted in the total number of charged residues compared to the other three categories. We examined the predictability of the high-B-factor regions and developed a predictor that discriminates between regions of low and high B-factors. This predictor achieved an accuracy of 70% and a correlation of 0.43 with experimental data, outperforming the 64% accuracy and 0.32 correlation of predictors based solely on flexibility indices. To further clarify the differences between short disordered regions and ordered regions, a predictor of short disordered regions was developed. Its relatively high accuracy of 81% indicates considerable differences between ordered and disordered regions. The distinctive amino acid biases of high-B-factor ordered regions, short disordered regions, and long disordered regions indicate that the sequence determinants for these flexibility categories differ from one another, whereas the significantly-greater-than-chance predictability of these categories from sequence suggest that flexible ordered regions, short disorder, and long disorder are, to a significant degree, encoded at the primary structure level.  相似文献   

7.
    
The structure of C-terminal domain (CaD136, C-terminal residues 636-771) of chicken gizzard caldesmon has been analyzed by a variety of physico-chemical methods. We are showing here that CaD136 does not have globular structure, has low secondary structure content, is essentially noncompact, as it follows from high R(g) and R(S) values, and is characterized by the absence of distinct heat absorption peaks, i.e. it belongs to the family of natively unfolded (or intrinsically unstructured) proteins. Surprisingly, effective binding of single calmodulin molecule (K(d) = 1.4 +/- 0.2 microM) leads only to a very moderate folding of this protein and CaD136 remains substantially unfolded within its tight complex with calmodulin. The biological significance of these observations is discussed.  相似文献   

8.
    
The cell cycle inhibitor p57Kip2 induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases. p57, although active as a cyclin A-CDK2 inhibitor, is largely unfolded or intrinsically disordered as shown by circular dichroism and fluorescence spectra characteristic of an unfolded protein and a hydrodynamic radius consistent with an unfolded structure. In addition, the N-terminal domain of p57 is both functionally independent as a cyclin A-CDK2 inhibitor and unstructured, as demonstrated by circular dichroism and fluorescence spectra indicative of unfolded proteins, a lack of 1H chemical shift dispersion and a hydrodynamic radius consistent with a highly unfolded structure. The amino acid compositions of full-length p57 and the excised QT domain of p57 exhibit significant deviations from the average composition of globular proteins that are consistent with the observed intrinsic disorder. However, the amino acid composition of the CDK inhibition domain of p57 does not exhibit such a striking deviation from the average values observed for proteins, implying that a general low level of hydrophobicity, rather than depletion or enrichment in specific amino acids, contributes to the intrinsic disorder of the excised p57 CDK inhibition domain.  相似文献   

9.
10.
    
NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5) and cytochrome b5 reductase (b5R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5R domains (CS/b5R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25–129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116QMDWLKLTRT126) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.  相似文献   

11.
12.
  总被引:1,自引:0,他引:1  
Solt I  Magyar C  Simon I  Tompa P  Fuxreiter M 《Proteins》2006,64(3):749-757
Phosphorylation at Ser-133 of the kinase inducible domain of CREB (KID) triggers its binding to the KIX domain of CBP via a concomitant coil-to-helix transition. The exact role of this key event is still puzzling: it does not switch between disordered and ordered states, nor its direct interactions fully account for selectivity. Hence, we reasoned that phosphorylation may shift the conformational preferences of KID towards a binding-competent state. To this end we investigated the intrinsic structural properties of the unbound KID in phosphorylated and unphosphorylated forms by simulated annealing and molecular dynamics simulations. Although helical populations show subtle differences, phosphorylation reduces the flexibility of the turn segment connecting the two helices in the complexed structure and induces a transient structural element that corresponds to its bound conformation. It is stabilized by the pSer-133-Arg-131 interaction, which is absent from the unphosphorylated KID. Diminishing this coupling decreases the 3.1 kcal/mol contribution of pSer-133 to the binding free energy (DeltaGbind) of the phosphorylated KID to KIX by 1.1 kcal/mol, as computed in reference to Ser-133. In a binding competent form of the S133E KID mutant, the contribution of Glu-133 to DeltaGbind is by 1.5 kcal/mol smaller than that of pSer, suggesting that altered structural properties due to pSer --> Glu replacement impair the binding affinity. Thus, we propose that phoshorylation contributes to selectivity not merely by the direct interactions of the phosphate group with KIX, but also by promoting the formation of a transient structural element in the highly conserved turn segment.  相似文献   

13.
  总被引:1,自引:0,他引:1  
Tompa P  Prilusky J  Silman I  Sussman JL 《Proteins》2008,71(2):903-909
Targeted turnover of proteins is a key element in the regulation of practically all basic cellular processes. The underlying physicochemical and/or sequential signals, however, are not fully understood. This issue is particularly pertinent in light of the recent recognition that intrinsically unstructured/disordered proteins, common in eukaryotic cells, are extremely susceptible to proteolytic degradation in vitro. The in vivo half-lives of proteins were determined recently in a high-throughput study encompassing the entire yeast proteome; here we examine whether these half-lives correlate with the presence of classical degradation motifs (PEST region, destruction-box, KEN-box, or the N-terminal residue) or with various physicochemical characteristics, such as the size of the protein, the degree of structural disorder, or the presence of low-complexity regions. Our principal finding is that, in general, the half-life of a protein does not depend on the presence of degradation signals within its sequence, even of ubiquitination sites, but correlates mainly with the length of its polypeptide chain and with various measures of structural disorder. Two distinct modes of involvement of disorder in degradation are proposed. Susceptibility to degradation of longer proteins, containing larger numbers of residues in conformational disorder, suggests an extensive function, whereby the effect of disorder can be ascribed to its mere physical presence. However, after normalization for protein length, the only signal that correlates with half-life is disorder, which indicates that it also acts in an intensive manner, that is, as a specific signal, perhaps in conjunction with the recognition of classical degradation motifs. The significance of correlation is rather low; thus protein degradation is not determined by a single characteristic, but is a multi-factorial process that shows large protein-to-protein variations. Protein disorder, nevertheless, plays a key signalling role in many cases.  相似文献   

14.
    
An intriguing regulatory mechanism is the ability of some proteins to recognize their binding partners in an isoform‐specific manner. In this study we undertook a systematic analysis of the specificity of the tropomodulin (Tmod) interaction with tropomyosin (TM) to show that affinities of different Tmod isoforms to TM are isoform‐dependent. Intrinsic disorder predictions, alignment of sequences, and circular dichroism were utilized to establish a structural basis for these isoform‐specific interactions. The affinity of model peptides derived from the N‐terminus of different TM isoforms to protein fragments that correspond to the two TM‐binding sites of different Tmod isoforms were analyzed. Several residues were determined to be responsible for the isoform‐dependent differences in affinity. We suggest that changing a set of residues rather than a single residue is needed to alter the binding affinity of one isoform to mimic the affinity of another isoform. The general intrinsic disorder predictor, PONDR® VLXT, was shown to be a useful tool for analyzing regions involved in isoform‐specific binding and for predicting the residues important for isoform differences in binding. Knowing the residues responsible for isoform‐specific affinity creates a tool suitable for studying the influence of Tmod/TM interactions on sarcomere assembly in muscle cells or actin dynamics in non‐muscle cells. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
    
An interaction between a pair of proteins unique for a particular tissue is denoted as a tissue-specific interaction (TSI). Tissue-specific (TS) proteins always perform TSIs with a limited number of interacting partners. However, it has been claimed that housekeeping (HK) proteins frequently take part in TSIs. This is actually an unusual phenomenon. How a single HK protein mediates TSIs – remains an interesting yet an unsolved question. We have hypothesized that HK proteins have attained a high degree of structural flexibility to modulate TSIs efficiently. We have observed that HK proteins are selected to be intrinsically disordered compared to TS proteins. Therefore, the purposeful adaptation of structural disorder brings out special advantages for HK proteins compared to TS proteins. We have demonstrated that TSIs may play vital roles in shaping the molecular adaptation of disordered regions within HK proteins. We also have noticed that HK proteins, mediating a huge number of TSIs, have a greater portion of their interacting interfaces overlapped with the adjacent disordered segment. Moreover, these HK proteins, mediating TSIs, preferably adapt single domain (SD). We have concluded that HK proteins adapt a high degree of structural flexibility to mediate TSIs. Besides, having a SD along with structural flexibility is more economic than maintaining multiple domains with a rigid structure. This assists them in attaining various structural conformations upon binding to their partners, thereby designing an economically optimum molecular system.  相似文献   

16.
    
Pro/Ala-rich sequences (PAS) are polypeptides that were developed as a biological alternative to poly-ethylene glycol (PEG) to generate biopharmaceuticals with extended plasma half-life. Like PEG, PAS polypeptides are conformationally disordered and show high solubility in water. Devoid of any charged or prominent hydrophobic side chains, these biosynthetic polymers represent an extreme case of intrinsically disordered proteins. Despite lack of immunogenicity of PAS tags in numerous animal studies we now succeeded in generating monoclonal antibodies (MAbs) against three different PAS versions. To this end, mice were immunized with a PAS#1, P/A#1 or APSA 40mer peptide conjugated to keyhole limpet hemocyanin as highly immunogenic carrier protein. In each case, one MAb with high binding activity and specificity towards a particular PAS motif was obtained. The apparent affinity was strongly dependent on the avidity effect and most pronounced for the bivalent MAb when interacting with a long PAS repeat. X-ray structural analysis of four representative anti-PAS Fab fragments in complex with their cognate PAS epitope peptides revealed interactions dominated by hydrogen bond networks involving the peptide backbone as well as multiple Van der Waals contacts arising from intimate shape complementarity. Surprisingly, Ala, the L-amino acid with the smallest side chain, emerged as a crucial feature for epitope recognition, contributing specific contacts at the center of the paratope in several anti-PAS complexes. Apart from these insights into how antibodies can recognize feature-less peptides without secondary structure, the MAbs characterized in this study offer valuable reagents for the preclinical and clinical development of PASylated biologics.  相似文献   

17.
    
Crandall YM  Bruch MD 《Biopolymers》2008,89(3):197-209
Mastoparan-X, a 14-residue peptide found in wasp venom, does not adopt a well-defined structure in water, but it folds into an alpha-helix upon addition of trifluoroethanol (TFE). At low levels of TFE, the peptide is partially folded, passing through intermediate stages of folding as the amount of TFE is increased. These partially folded states have been characterized by CD and NMR spectroscopy, and methods to estimate the helical content from CD, chemical shift, and nuclear overhauser effect (NOE) data are compared. Variation in the sign and intensity of NOE cross-peaks is observed in different regions of the peptide, indicative of greater mobility of the sidechains compared to the backbone of the peptide. Furthermore, variation in the sidechain mobility is observed, both between sidechains of different amino acids and within the sidechain of a given amino acid. By monitoring chemical shifts and NOE intensities as the TFE concentration is increased, the initiation site for helix formation could be identified. Furthermore, details of the peptide structure and dynamics during the folding process were elucidated.  相似文献   

18.
    
Disordered domains are long regions of intrinsic disorder that ideally have conserved sequences, conserved disorder, and conserved functions. These domains were first noticed in protein–protein interactions that are distinct from the interactions between two structured domains and the interactions between structured domains and linear motifs or molecular recognition features (MoRFs). So far, disordered domains have not been systematically characterized. Here, we present a bioinformatics investigation of the sequence–disorder–function relationships for a set of probable disordered domains (PDDs) identified from the Pfam database. All the Pfam seed proteins from those domains with at least one PDD sequence were collected. Most often, if a set contains one PDD sequence, then all members of the set are PDDs or nearly so. However, many seed sets have sequence collections that exhibit diverse proportions of predicted disorder and structure, thus giving the completely unexpected result that conserved sequences can vary substantially in predicted disorder and structure. In addition to the induction of structure by binding to protein partners, disordered domains are also induced to form structure by disulfide bond formation, by ion binding, and by complex formation with RNA or DNA. The two new findings, (a) that conserved sequences can vary substantially in their predicted disorder content and (b) that homologues from a single domain can evolve from structure to disorder (or vice versa), enrich our understanding of the sequence ? disorder ensemble ? function paradigm.  相似文献   

19.
    
Tubulins are an ancient family of eukaryotic proteins characterized by an amino‐terminal globular domain and disordered carboxyl terminus. These carboxyl termini play important roles in modulating the behavior of microtubules in living cells. However, the atomic‐level basis of their function is not well understood. These regions contain multiple acidic residues and their overall charges are modulated in vivo by post‐translational modifications, for example, phosphorylation. In this study, we describe an application of NMR and computer Monte Carlo simulations to investigate how the modification of local charge alters the conformational sampling of the γ‐tubulin carboxyl terminus. We compared the dynamics of two 39‐residue polypeptides corresponding to the carboxyl‐terminus of yeast γ‐tubulin. One polypeptide comprised the wild‐type amino acid sequence while the second contained a Y > D mutation at Y11 in the polypeptide (Y445 in the full protein). This mutation introduces additional negative charge at a site that is phosphorylated in vivo and produces a phenotype with perturbed microtubule function. NMR relaxation measurements show that the Y11D mutation produces dramatic changes in the millisecond‐timescale motions of the entire polypeptide. This observation is supported by Monte Carlo simulations that—similar to NMR—predict the WT γ‐CT is largely unstructured and that the substitution of Tyr 11 with Asp causes the sampling of extended conformations that are unique to the Y11D polypeptide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号