首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser1177), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production.  相似文献   

2.
Endothelial nitric oxide synthase (eNOS) plays a crucial role in endothelial cell functions. SIRT1, a NAD+-dependent deacetylase, is shown to regulate endothelial function and hence any alteration in endothelial SIRT1 will affect normal vascular physiology. Cigarette smoke (CS)-mediated oxidative stress is implicated in endothelial dysfunction. However, the role of SIRT1 in regulation of eNOS by CS and oxidants are not known. We hypothesized that CS-mediated oxidative stress downregulates SIRT1 leading to acetylation of eNOS which results in reduced nitric oxide (NO)-mediated signaling and endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) exposed to cigarette smoke extract (CSE) and H2O2 showed decreased SIRT1 levels, activity, but increased phosphorylation concomitant with increased eNOS acetylation. Pre-treatment of endothelial cells with resveratrol significantly attenuated the CSE- and oxidant-mediated SIRT1 levels and eNOS acetylation. These findings suggest that CS- and oxidant-mediated reduction of SIRT1 is associated with acetylation of eNOS which have implications in endothelial dysfunction.  相似文献   

3.
4.
Endothelin-1 has dual vasoactive effects, mediating vasoconstriction via ETA receptor activation of vascular smooth muscle cells and vasorelaxation via ETB receptor activation of endothelial cells. Although it is commonly accepted that endothelin-1 binding to endothelial cell ETB receptors stimulates nitric oxide (NO) synthesis and subsequent smooth muscle relaxation, the signaling pathways downstream of ETB receptor activation are unknown. Here, using a model in which we have utilized isolated primary endothelial cells, we demonstrate that ET-1 binding to sinusoidal endothelial cell ETB receptors led to increased protein kinase B/Akt phosphorylation, endothelial cell nitric-oxide synthase (eNOS) phosphorylation, and NO synthesis. Furthermore, eNOS activation was not dependent on tyrosine phosphorylation, and pretreatment of endothelial cells with pertussis toxin as well as overexpression of a dominant negative G-protein-coupled receptor kinase construct that sequesters betagamma subunits inhibited Akt phosphorylation and NO synthesis. Taken together, the data elucidate a G-protein-coupled receptor signaling pathway for ETB receptor-mediated NO production and call attention to the absolute requirement for heterotrimeric G-protein betagamma subunits in this cascade.  相似文献   

5.
Tetrahydrobiopterin (BH4) is a required cofactor for the synthesis of NO by NOS. Bioavailability of BH4 is a critical factor in regulating the balance between NO and superoxide production by endothelial NOS (eNOS coupling). Crystal structures of the mouse inducible NOS oxygenase domain reveal a homologous BH4-binding site located in the dimer interface and a conserved tryptophan residue that engages in hydrogen bonding or aromatic stacking interactions with the BH4 ring. The role of this residue in eNOS coupling remains unexplored. We overexpressed human eNOS W447A and W447F mutants in novel cell lines with tetracycline-regulated expression of human GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, to determine the importance of BH4 and Trp-447 in eNOS uncoupling. NO production was abolished in eNOS-W447A cells and diminished in cells expressing W447F, despite high BH4 levels. eNOS-derived superoxide production was significantly elevated in W447A and W447F versus wild-type eNOS, and this was sufficient to oxidize BH4 to 7,8-dihydrobiopterin. In uncoupled, BH4-deficient cells, the deleterious effects of W447A mutation were greatly exacerbated, resulting in further attenuation of NO and greatly increased superoxide production. eNOS dimerization was attenuated in W447A eNOS cells and further reduced in BH4-deficient cells, as demonstrated using a novel split Renilla luciferase biosensor. Reduction of cellular BH4 levels resulted in a switch from an eNOS dimer to an eNOS monomer. These data reveal a key role for Trp-447 in determining NO versus superoxide production by eNOS, by effects on BH4-dependent catalysis, and by modulating eNOS dimer formation.  相似文献   

6.
G‐protein‐coupled receptor (GPCR) kinase 2 interacting protein‐1 (GIT1) is a scaffold protein expressed in various cell types including neurons, endothelial, and vascular smooth muscle cells. The GIT1 knockout (KO) mouse has a pulmonary phenotype due to impaired endothelial function. Because GIT1 is tyrosine phosphorylated by Src kinase, we anticipated that GIT1 KO should have a bone phenotype similar to Src KO. Microcomputed tomography of the long bones revealed that GIT1 KO mice have a 2.3‐fold increase in bone mass compared to wild‐type controls. Histomorphometry showed increased trabecular number and connectivity suggesting impaired bone remodeling. Immunoblot analysis of GIT1 expression showed that it was expressed in both osteoclasts and osteoblasts. Osteoblast activity and function assayed by alkaline phosphatase, mineral nodule formation, and in vivo calcein labeling were normal in GIT1 KO mice suggesting that the observed increase in bone mass was due to an osteoclast defect. GIT1 KO bone marrow cells differentiated into multinucleated osteoclasts, but had defective bone resorbing function on dentin slices. This defect was likely caused by loss of podosome belt based on immunofluorescence analysis and previous studies showing that GIT1 is required for podosome formation. Furthermore, we found that GIT1 was a regulator of receptor activator of NFκB (RANK) signaling since it was tyrosine phosphorylated in a Src‐dependent manner and was required for phospholipase C‐γ2 phosphorylation. These data show that GIT1 is a key regulator of bone mass in vivo by regulating osteoclast function and suggest GIT1 as a potential target for osteoporosis therapy. J. Cell. Physiol. 225: 777–785, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Ginsenosides have been shown to stimulate nitric oxide (NO) production in aortic endothelial cells. However, the signaling pathways involved have not been well studied in human aortic endothelial cells. The present study was designed to examine whether purified ginsenoside Rb1, a major active component of ginseng could actually induce NO production and to clarify the signaling pathway in human aortic endothelial cells. NO production was rapidly increased by Rb1. The rapid increase in NO production was abrogated by treatment with nitric oxide synthetase inhibitor, L-NAME. Rb1 stimulated rapid phosphorylation of Akt (Ser473), ERK1/2 (Thr202/Thr204) and eNOS (Ser1177). Rapid phosphorylation of eNOS (Ser1177) was prevented by SH-5, an Akt inhibitor or wortmannin, PI3-kinase inhibitor and partially attenuated by PD98059, an upstream inhibitor for ERK1/2. Interestingly, NO production and eNOS phosphorylation at Ser1177 by Rb1 were abolished by androgen receptor antagonist, nilutamide. The results suggest that PI3kinase/Akt and MEK/ERK pathways and androgen receptor are involved in the regulation of acute eNOS activation by Rb1 in human aortic endothelial cells.  相似文献   

8.
Thum T  Tsikas D  Frölich JC  Borlak J 《FEBS letters》2003,555(3):567-571
Growth hormone deficiency is linked to cardiovascular disease and particularly increased peripheral vascular resistance. Surprisingly, its role in endothelial nitric oxide (NO) synthetase (eNOS) regulation and NO release is basically unknown. We therefore studied the effects of different doses of somatotropin in cultures of a human endothelial cell line (EAhy926). We investigated expression and activity of eNOS, as well as other target genes known to be deregulated in cardiovascular disease including E-selectin and the lectin-like oxidized low density lipoprotein receptor. Treatment of cultured human endothelial cells with somatotropin resulted in significant (P<0.05) increases of eNOS gene and protein expression, as well as NO release, whereas production of intracellular reactive oxygen species was significantly reduced, at the highest somatotropin dose level. The enhanced eNOS gene/protein expression and enzyme activity correlate well. Our findings are suggestive for a novel role of growth hormone in endothelial biology, and particularly NO production.  相似文献   

9.
Dual increases in nitric oxide ((*)NO) and superoxide anion (O(2)(*-)) production are one of the hallmarks of endothelial cell proliferation. Increased expression of endothelial nitric oxide synthase (eNOS) has been shown to play an important role in maintaining high levels of (*)NO generation to offset the increase in O(2)(*-) that occurs during proliferation. Although recent reports indicate that heat shock protein 90 (hsp90) associates with eNOS to increase (*)NO generation, the role of hsp90 association with eNOS during endothelial cell proliferation remains unknown. In this report, we examine the effects of endothelial cell proliferation on eNOS expression, hsp90 association with eNOS, and the mechanisms governing eNOS generation of (*)NO and O(2)(*-). Western analysis revealed that endothelial cells not only increased eNOS expression during proliferation but also hsp90 interactions with the enzyme. Pretreatment of cultures with radicicol (RAD, 20 microM), a specific inhibitor that does not redox cycle, decreased A23187-stimulated (*)NO production and increased L(omega)-nitroargininemethylester (L-NAME)-inhibitable O(2)(*-) generation. In contrast, A23187 stimulation of controls in the presence of L-NAME increased O(2)(*-) generation, confirming that during proliferation eNOS generates (*)NO. Our findings demonstrate that hsp90 plays an important role in maintaining (*)NO generation during proliferation. Inhibition of hsp90 in vascular endothelium provides a convenient mechanism for uncoupling eNOS activity to inhibit (*)NO production. This study provides new understanding of the mechanisms by which ansamycin antibiotics inhibit endothelial cell proliferation. Such information may be useful in the development and design of new antineoplastic agents in the future.  相似文献   

10.
Nitric oxide (NO) production by endothelial cell nitric oxide synthase (eNOS) in sinusoidal endothelial cells is reduced in the injured liver and leads to intrahepatic portal hypertension. We sought to understand the mechanism underlying defective eNOS function. Phosphorylation of the serine-threonine kinase Akt, which activates eNOS, was substantially reduced in sinusoidal endothelial cells from injured livers. Overexpression of Akt in vivo restored phosphorylation of Akt and production of NO and reduced portal pressure in portal hypertensive rats. We found that Akt physically interacts with G-protein-coupled receptor kinase-2 (GRK2), and that this interaction inhibits Akt activity. Furthermore, GRK2 expression increased in sinusoidal endothelial cells from portal hypertensive rats and knockdown of GRK2 restored Akt phosphorylation and NO production, and normalized portal pressure. Finally, after liver injury, GRK2-deficient mice developed less severe portal hypertension than control mice. Thus, an important mechanism underlying impaired activity of eNOS in injured sinusoidal endothelial cells is defective phosphorylation of Akt caused by overexpression of GRK2 after injury.  相似文献   

11.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) elicit numerous biological responses including cell survival, growth, migration, and differentiation in endothelial cells mediated by the endothelial differentiation gene, a family of G-protein-coupled receptors, and fetal liver kinase-1/kinase-insert domain-containing receptor (Flk-1/KDR), one of VEGF receptors, respectively. Recently, it was reported that S1P or VEGF treatment of endothelial cells leads to phosphorylation at Ser-1179 in bovine endothelial nitric oxide synthase (eNOS), and this phosphorylation is critical for eNOS activation. S1P stimulation of eNOS phosphorylation was shown to involve G(i) protein, phosphoinositide 3-kinase, and Akt. VEGF also activates eNOS through Flk-1/KDR, phosphoinositide 3-kinase, and Akt, which suggested that S1P and VEGF may share upstream signaling mediators. We now report that S1P treatment of bovine aortic endothelial cells acutely increases the tyrosine phosphorylation of Flk-1/KDR, similar to VEGF treatment. S1P-mediated phosphorylation of Flk-1/KDR, Akt, and eNOS were all inhibited by VEGF receptor tyrosine kinase inhibitors and by antisense Flk-1/KDR oligonucleotides. Our study suggests that S1P activation of eNOS involves G(i), calcium, and Src family kinase-dependent transactivation of Flk-1/KDR. These data are the first to establish a critical role of Flk-1/KDR in S1P-stimulated eNOS phosphorylation and activation.  相似文献   

12.
Bradykinin (BK) acutely increases endothelial nitric oxide (NO) production by activating endothelial NO synthase (eNOS), and this increase is in part correlated with enhanced phosphorylation/dephosphorylation of eNOS by several protein kinases and phosphatases. However, the signaling mechanisms producing this increase are still controversial. In an attempt to delineate the acute effect of BK on endothelial NO production, confluent bovine aortic endothelial cells were incubated with BK, and NO production was measured by NO-specific chemiluminescence. Significant increase in NO levels was detected as early as 1 min after BK treatment, with concomitant increase in the phosphorylation of Ser(1179) (bovine sequence) site of eNOS (eNOS-Ser(1179)). This acute effect of BK on both increases was blocked only by treatment of protein kinase A inhibitor H-89, but not by the inhibitors of calmodulin-dependent kinase II and protein kinase B, suggesting that the rapid increase in NO production by BK is mediated by the PKA-dependent phosphorylation of eNOS-Ser(1179).  相似文献   

13.
Estrogen causes rapid endothelial nitric oxide (NO) production because of the activation of plasma membrane-associated estrogen receptors (ER) coupled to endothelial NO synthase (eNOS). In the present study, we determined the role of G proteins in eNOS activation by estrogen. Estradiol-17beta (E(2), 10(-8) m) and acetylcholine (10(-5) m) caused comparable increases in NOS activity (15 min) in intact endothelial cells that were fully blocked by pertussis toxin (Ptox). In addition, exogenous guanosine 5'-O-(2- thiodiphosphate) inhibited E(2)-mediated eNOS stimulation in isolated endothelial plasma membranes, and Ptox prevented enzyme activation by E(2) in COS-7 cells expressing ERalpha and eNOS. Coimmunoprecipitation studies of plasma membranes from COS-7 cells transfected with ERalpha and specific Galpha proteins demonstrated E(2)-stimulated interaction between ERalpha and Galpha(i) but not between ERalpha and either Galpha(q) or Galpha(s); the observed ERalpha-Galpha(i) interaction was blocked by the ER antagonist ICI 182,780 and by Ptox. E(2)-stimulated ERalpha-Galpha(i) interaction was also demonstrable in endothelial cell plasma membranes. Cotransfection of Galpha(i) into COS-7 cells expressing ERalpha and eNOS yielded a 3-fold increase in E(2)-mediated eNOS stimulation, whereas cotransfection with a protein regulator of G protein signaling, RGS4, inhibited the E(2) response. These findings indicate that eNOS stimulation by E(2) requires plasma membrane ERalpha coupling to Galpha(i) and that activated Galpha(i) mediates the requisite downstream signaling events. Thus, novel G protein coupling enables a subpopulation of ERalpha to initiate signal transduction at the cell surface. Similar mechanisms may underly the nongenomic actions of other steroid hormones.  相似文献   

14.
Vascular endothelial growth factor (VEGF) induces angiogenesis and regulates endothelial function via production and release of nitric oxide (NO), an important signaling molecule. The molecular basis leading to NO production involves phosphatidylinositiol-3 kinase (PI3K), Akt, and endothelial nitric-oxide synthase (eNOS) activation. In this study, we have examined whether small GTP-binding proteins of the ADP-ribosylation factor (ARF) family act as molecular switches to regulate signaling cascades activated by VEGF in endothelial cells. Our results show that this growth factor can promote the rapid and transient activation of ARF1. In endothelial cells, this GTPase is present on dynamic plasma membrane ruffles. Inhibition of ARF1 expression, using RNA interference, markedly impaired VEGF-dependent eNOS phosphorylation and NO production by preventing the activation of the PI3K/Akt signaling axis. Furthermore, our data indicate that phosphorylation of Tyr801, on VEGF receptor 2, is essential for activating Src- and ARF1-dependent signaling events leading to NO release from endothelial cells. Lastly, this mediator is known to regulate a broad variety of endothelial cell functions. Depletion of ARF1 markedly inhibits VEGF-dependent increase of vascular permeability as well as capillary tubule formation, a process important for angiogenesis. Taken together, our data indicate that ARF1 is a novel modulator of VEGF-stimulated NO release and signaling in endothelial cells.  相似文献   

15.
The purpose of this study was to explore the effects of KYIPIQ, an angiotensin I-converting enzyme (ACE) inhibitory peptide found in yak milk casein, on the production of nitric oxide (NO) in human vascular endothelial cells (HUVECs). Additionally, we also sought to study the transport pathway of this peptide across monolayers of the human epithelial colorectal adenocarcinoma cell line (Caco-2). Treatment with peptide KYIPIQ increased NO synthesis and expression of phosphorylated endothelial nitric oxide synthase (eNOS) in HUVECs. Our results demonstrate that KYIPIQ-induced eNOS phosphorylation is dependent on the protein kinase B (Akt) activation pathway. Furthermore, our data indicate that the peptide KYIPIQ can be transported across the Caco-2 cell monolayer and that paracellular transport is the main transcellular mechanism. Thus, our studies suggest that KYIPIQ can be potentially used as a therapeutic agent for the treatment of hypertension.  相似文献   

16.
Recent studies have indicated that insulin activates endothelial nitric-oxide synthase (eNOS) by protein kinase B (PKB)-mediated phosphorylation at Ser1177 in endothelial cells. Because hyperglycemia contributes to endothelial dysfunction and decreased NO availability in types 1 and 2 diabetes mellitus, we have studied the effects of high glucose (25 mM, 48 h) on insulin signaling pathways that regulate NO production in human aortic endothelial cells. High glucose inhibited insulin-stimulated NO synthesis but was without effect on NO synthesis stimulated by increasing intracellular Ca2+ concentration. This was accompanied by reduced expression of IRS-2 and attenuated insulin-stimulated recruitment of PI3K to IRS-1 and IRS-2, yet insulin-stimulated PKB activity and phosphorylation of eNOS at Ser1177 were unaffected. Inhibition of insulin-stimulated NO synthesis by high glucose was unaffected by an inhibitor of PKC. Furthermore, high glucose down-regulated the expression of CAP and Cbl, and insulin-stimulated Cbl phosphorylation, components of an insulin signaling cascade previously characterized in adipocytes. These data suggest that high glucose specifically inhibits insulin-stimulated NO synthesis and down-regulates some aspects of insulin signaling, including the CAP-Cbl signaling pathway, yet this is not a result of reduced PKB-mediated eNOS phosphorylation at Ser1177. Therefore, we propose that phosphorylation of eNOS at Ser1177 is not sufficient to stimulate NO production in cells cultured at 25 mM glucose.  相似文献   

17.
We have recently demonstrated that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) increases endothelial nitric oxide synthase (eNOS) phosphorylation, NOS activity, and nitric oxide (NO) synthesis in cultured human umbilical vein endothelial cells (HUVEC), without inducing apoptotic cell death. Although an important factor that regulates eNOS activity is its localization within the cells, little is known about the role of TRAIL in the regulation of eNOS trafficking among cellular compartments and the cytoskeleton involvement in this machinery. Then, we did both quantitative and semi-quantitative evaluations with biochemical assays and immune fluorescence microscopy in the presence of specific inhibitors of NOS activity as well as of cytoskeletal microtubule structures. In our cellular model, TRAIL treatment not only increased NO levels but also caused a time-dependent NO migration of fluorescent spots from the plasma membrane to the inner part of the cells. In unstimulated cells, most of the eNOS was localized at the cell membranes. However, within 10 min following addition of TRAIL, nearly all the cells showed an increased cytoplasm localization of eNOS which appeared co-localized with the Golgi apparatus at a higher extent than in unstimulated cells. These effects were associated to an increased formation of trans-cytoplasm stress fibers with no significant changes of the microtubule network. Conversely, microtubule disruption and Golgi scattering induced with Nocodazole treatment inhibited TRAIL-increased NOS activity, indicating that, on cultured HUVEC, TRAIL ability to affect NO production by regulating eNOS sub-cellular distribution is mediated by cytoskeleton and Golgi complex modifications.  相似文献   

18.
The aim of our study was to examine in detail the impact of NF-E2-related factor (Nrf2) activation on endothelial cell function with focus on redox homeostasis and the endothelial nitric oxide synthase (eNOS) system. We administered 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-IM), a known activator of Nrf2, to primary human umbilical vein endothelial cells. Activation of Nrf2 by CDDO-IM increased the amount of bioavailable nitric oxide (NO), a major contributor to vascular homeostasis, in naive and stressed cells. Concomitantly, intracellular reactive oxygen species were dose-and time-dependently reduced. In apparent contrast to elevated NO levels, eNOS protein expression was transiently decreased in an Nrf2-dependent manner. Employing pharmacological inhibitors as well as a small interfering RNA approach, we identified de novo protein synthesis of heme oxygenase 1 (HO-1) and its enzymatic activity as cause for the observed reduction of eNOS. We hypothesize that under redox stress, when the availability of tetrahydrobiopterin, a pivotal stoichiometric cofactor for eNOS, is limited, activation of Nrf2 leads (a) to transient reduction of eNOS protein levels and (b) to an antioxidant defense in human umbilical vein endothelial cells. Both activities ensure that a stoichiometric ratio of eNOS and tetrahydrobiopterin is sustained and that the risk of eNOS uncoupling is reduced. Our study is the first to provide a causal link between Nrf2 activation and eNOS expression and NO levels, respectively.  相似文献   

19.
As a primary antioxidant, ascorbic acid (AA) provides beneficial effects for vascular health mitigating oxidative stress and endothelial dysfunction. However, the association of intracellular AA with NO production occurring inside the endothelial cells remains unclear. In the present study, we addressed this issue by increasing intracellular AA directly through de novo synthesis. To restore AA synthesis pathway, bovine aortic endothelial cells were transfected with the plasmid vector encoding L-gulono-1,4-lactone oxidase (GULO, EC 1.1.3.8), the missing enzyme converting L-gulono-1,4-lactone (GUL) to AA. Functional expression of GULO was verified by Western blotting and in vitro enzyme activity assay. GULO expression alone did not lead to AA synthesis but the supply of GUL resulted in a marked increase of intracellular AA. When the cells were stimulated with calcium ionophore, A23187, NO production was more active in the GULO-expressing cells supplied with GUL, in comparison with the cells without GULO expression or without GUL supply, indicating that intracellular AA regulated NO production. Enhancement of NO production by intracellular AA was further verified in aortic endothelial cells obtained from eNOS knockout mice that were cotransfected with eNOS and GULO constructs. GULO-dependent AA synthesis also elevated intracellular tetrahydrobiopterin content, implicating that this essential cofactor of endothelial nitric oxide synthase (eNOS) might mediate the AA effect. The present study strongly suggests that intracellular AA plays critical roles in vascular physiology through enhancing endothelial NO production.  相似文献   

20.
Vitamin C, or ascorbic acid, decreases paracellular endothelial permeability in a process that requires rearrangement of the actin cytoskeleton. To define the proximal mechanism of this effect, we tested whether it might involve enhanced generation and/or sparing of nitric oxide (NO) by the vitamin. EA.hy926 endothelial cells cultured on semi-porous filter supports showed decreased endothelial barrier permeability to radiolabeled inulin in response to exogenous NO provided by the NO donor spermine NONOATE, as well as to activation of the downstream NO pathway by 8-bromo-cyclic GMP, a cell-penetrant cyclic GMP analog. Inhibition of endothelial nitric oxide synthase (eNOS) with Nω-nitro-l-arginine methyl ester increased endothelial permeability, indicating a role constitutive NO generation by eNOS in maintaining the permeability barrier. Inhibition of guanylate cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one also increased endothelial permeability and blocked barrier tightening by spermine NONOATE. Loading cells with what are likely physiologic concentrations of ascorbate decreased endothelial permeability. This effect was blocked by inhibition of either eNOS or guanylate cyclase, suggesting that it involved generation of NO by eNOS and subsequent NO-dependent activation of guanylate cyclase. These results show that endothelial permeability barrier function depends on constitutive generation of NO and that ascorbate-dependent tightening of this barrier involves maintaining NO through the eNOS/guanylate cyclase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号