首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
An excess of the free radical nitric oxide (NO) is viewed as a deleterious factor involved in various CNS disorders. Numerous studies have shown that the Ginkgo biloba extract EGb 761 is a NO scavenger with neuroprotective properties. However, the mechanisms underlying its neuroprotective ability remain to be fully established. Thus, we investigated the effect of different constituents of EGb 761, i.e., flavonoids and terpenoids, against toxicity induced by NO generators on cells of the hippocampus, a brain area particularly susceptible to neurodegenerative damage. Exposure of rat primary mixed hippocampal cell cultures to either sodium nitroprusside (SNP; 100 microM) or 3-morpholinosydnonimine resulted in both a decrease in cell survival and an increase in free radical accumulation. These SNP-induced events were blocked by either EGb 761 (10-100 microg/ml) or its flavonoid fraction CP 205 (25 microg/ml), as well as by inhibitors of protein kinase C (PKC; chelerythrine) and L-type calcium channels (nitrendipine). In contrast, the terpenoid constituents of EGb 761, known as bilobalide and ginkgolide B, as well as inhibitors of phospholipases A [3-[(4-octadecyl)benzoyl]acrylic acid (OBAA)] and C (U-73122), failed to display any significant effects. Moreover, EGb 761 (50 microm) CP 205 (25 microg/ml), and chelerythrine were also able to rescue hippocampal cells preexposed to SNP (up to 1 mM). Finally, EGb 761 (100 microg/ml) was shown to block the activation of PKC induced by SNP (100 microM). These data suggest that the protective and rescuing abilities of EGb 761 are not only attributable to the antioxidant properties of its flavonoid constituents but also via their ability to inhibit NO-stimulated PKC activity.  相似文献   

4.
Luo Y 《Life sciences》2006,78(18):2066-2072
Alzheimer's disease (AD) is affecting larger and larger proportions of our population as lifespan increases. Thus, the means to prevent or reduce the rate of this disorder is a high priority for medical research. A standardized extract of Ginkgo biloba leaves EGb 761 is a popular dietary supplement taken by the general public to enhance mental focus and by the elderly to delay onset of age-related loss of cognitive function. EGb 761 has been used for treatment of certain cerebral dysfunctions and dementias associated with aging and AD. Substantial evidence indicates that EGb 761 has neuroprotective effects. But, mechanisms of action of the components of the extract are, unfortunately, poorly understood. Research in my laboratory focuses on understanding mechanisms of action of the components of the herbal extract EGb 761 in protection against Alzheimer's disease. We have demonstrated that EGb 761 inhibited amyloid beta aggregation in vitro and attenuates reactive oxidative species (ROS) in a model organism - the round worm Caenorhabditis elegans. Furthermore, EGb 761 eased its toxicity in the transgenic C. elegans. We also found that only a certain size of the amyloid beta aggregates is toxic to the worms. These findings suggest that EGb 761 has a clear therapeutic potential for prevention and/or treatment of AD. A better understanding of the mechanisms of neuroprotection by EGb 761 will be important for designing therapeutic strategies, for basic understanding of the underlying neurodegenerative processes, and for a better understanding of the effectiveness and complexity of this herbal medicine.  相似文献   

5.
Zhao Z  Liu N  Huang J  Lu PH  Xu XM 《Journal of neurochemistry》2011,116(6):1057-1065
Ginkgo biloba extract (EGb761) has been shown to be neuroprotective; however, the mechanism by which EGb761 mediates neuroprotection remains unclear. We hypothesized that the neuroprotective effect of EGb761 is mediated by inhibition of cytosolic phospholipase A(2) (cPLA(2)), an enzyme that is known to play a key role in mediating secondary pathogenesis after acute spinal cord injury (SCI). To determine whether EGb761 neuroprotection involves the cPLA(2) pathway, we first investigated the effect of glutamate and hydrogen peroxide on cPLA(2) activation. Results showed that both insults induced an increase in the expression of phosphorylated cPLA(2) (p-cPLA(2)), a marker of cPLA(2) activation, and neuronal death in vitro. Such effects were significantly reversed by EGb761 administration. Additionally, EGb761 significantly decreased prostaglandin E(2) (PGE(2)) release, a downstream metabolite of cPLA(2). Moreover, inhibition of cPLA(2) activity with arachidonyl trifluromethyl ketone improved neuroprotection against glutamate and hydrogen peroxide-induced neuronal death, and reversed Bcl-2/Bax ratio; notably, EGb761 produced greater effects than arachidonyl trifluromethyl ketone. Finally, we showed that the extracellular signal-regulated kinase 1/2 signaling pathway is involved in EGb761's modulation of cPLA(2) phosphorylation. These results collectively suggest that the protective effect of EGb761 is mediated, at least in part, through inhibition of cPLA(2) activation, and that the extracellular signal-regulated kinase 1/2 signaling pathway may play an important role in mediating the EGb761's effect.  相似文献   

6.
The neurotoxicity of amyloid-beta protein (Abeta) is widely regarded as one of the fundamental causes of neurodegeneration in Alzheimer's disease (AD). This toxicity is related to Abeta aggregation into oligomers, protofibrils and fibrils. Recent studies suggest that intracellular Abeta, which causes profound toxicity, could be one of the primary therapeutic targets in AD. So far, no compounds targeting intracellular Abeta have been identified. We have investigated the toxicity induced by intracellular Abeta in a neuroblastoma MC65 line and found that it was closely related to intracellular accumulation of oligomeric complexes of Abeta (Abeta-OCs). We further identified a cell-permeable tricyclic pyrone named CP2 that ameliorates this toxicity and significantly reduces the levels of Abeta-OCs. In aqueous solution, CP2 attenuates Abeta oligomerization and prevents the oligomer-induced death of primary cortical neurons. CP2 analogs represent a new class of promising compounds for the amelioration of Abeta toxicities within both intracellular and extracellular sites.  相似文献   

7.
Ginkgo biloba extract (EGb 761) exerts a neuroprotective effect against ischemic brain injury through an anti-apoptotic mechanism. Parvalbumin is a calcium buffering protein that plays an important role in modulating intracellular calcium concentration and regulating apoptotic cell death. The aim of this study was to investigate whether EGb 761 affects parvalbumin expression in cerebral ischemic injury. Adult male Sprague-Dawley rats were treated with vehicle or EGb 761 (100 mg/kg) prior to middle cerebral artery occlusion (MCAO) and cerebral cortex tissues were collected 24 h after MCAO. A proteomic approach revealed a reduction in parvalbumin expression in the vehicle-treated animals, whereas EGb 761 pretreatment attenuates the ischemic injury-induced decrease in parvalbumin expression. RT-PCR and Western blot analyses clearly confirmed the fact that EGb 761 prevents the injury-induced decrease in parvalbumin. Moreover, the results of immunohistochemical staining showed that the number of parvalbumin-positive cells was lower in vehicle-treated animals than in sham-operated animals, and EGb 761 averted this decrease. Thus, these results suggest that the maintenance of parvalbumin expression is associated with the neuroprotective function of EGb 761 against neuronal damage induced by ischemia.  相似文献   

8.
Ginkgo biloba extract EGb761 has been shown to protect against β-amyloid peptide (Aβ)-induced neurotoxicity but the specific mechanisms remain unclear. In the present study, effects of EGb761 and two of its constituents, quercetin and ginkgolide B, on the cytotoxic action of Aβ (1-42) were tested with human neuroblastoma SH-SY5Y cells. We found that EGb761 was able to block Aβ (1-42)-induced cell apoptosis, reactive oxygen species (ROS) accumulation, mitochondrial dysfunction and activation of c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt signaling pathways. Both quercetin and ginkgolide B may be involved in the inhibitory effects of EGb761 on JNK, ERK1/2 and Akt signaling pathways. Ginkgolide B also helped to improve mitochondrial functions but quercetin failed to show this effect. Additional experiments suggest that, protective effects of EGb761 against Aβ toxicity may be associated with its antioxidant and platelet activating factor (PAF) antagonist activities. Quercetin but not ginkgolide B is one of the constituents responsible for the antioxidant action of EGb761. Both quercetin and ginkgolide B may be involved in the PAF antagonist activity of EGb761. Overall, actions of individual EGb761 components provide further insights into direct mechanisms underlying the neuroprotective effects of EGb761.  相似文献   

9.
Zameer A  Schulz P  Wang MS  Sierks MR 《Biochemistry》2006,45(38):11532-11539
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Abeta) protein in the brain. Immunization studies have demonstrated that anti-Abeta antibodies reduce Abeta deposition and improve clinical symptoms seen in AD. However, conventional antibody-based therapies risk an inflammatory response that can result in meningoencephalitis and cerebral hemorrhage. Here we report on the development of human-based single chain variable domain antibody fragments (scFvs) directed against the Abeta 25-35 region as potential therapeutics for AD that do not risk an inflammatory response. The 25-35 region of Abeta represents a promising therapeutic target since it promotes aggregation and is highly toxic. Two scFvs with differing affinities for Abeta were studied, and both inhibited aggregation of Abeta42 as determined by thioflavin T binding assay and atomic force microscopy analysis and blocked Abeta-induced toxicity toward human neuroblastoma SH-SY5Y cells as determined by MTT and LDH release assays. These results provide additional evidence that scFvs against Abeta provide an attractive alternative to more conventional antibody-based therapeutics for controlling aggregation and toxicity of Abeta.  相似文献   

10.
Alzheimer’s disease (AD) is the most common form of senile dementia which is characterized by abnormal amyloid beta (Aβ) accumulation and deposition in brain parenchyma and cerebral capillaries, and leads to blood-brain barrier (BBB) disruption. Despite great progress in understanding the etiology of AD, the underlying pathogenic mechanism of BBB damage is still unclear, and no effective treatment has been devised. The standard Ginkgo biloba extract EGb761 has been widely used as a potential cognitive enhancer for the treatment of AD. However, the cellular mechanism underlying the effect remain to be clarified. In this study, we employed an immortalized endothelial cell line (bEnd.3) and incubation of Aβ1–42 oligomer, to mimic a monolayer BBB model under conditions found in the AD brain. We investigated the effect of EGb761 on BBB and found that Aβ1–42 oligomer-induced cell injury, apoptosis, and generation of intracellular reactive oxygen species (ROS), were attenuated by treatment with EGb761. Moreover, treatment of the cells with EGb761 decreased BBB permeability and increased tight junction scaffold protein levels including ZO-1, Claudin-5 and Occludin. We also found that the Aβ1–42 oligomer-induced upregulation of the receptor for advanced glycation end-products (RAGE), which mediates Aβ cytotoxicity and plays an essential role in AD progression, was significantly decreased by treatment with EGb761. To our knowledge, we provide the first direct in vitro evidence of an effect of EGb761 on the brain endothelium exposed to Aβ1–42 oligomer, and on the expression of tight junction (TJ) scaffold proteins and RAGE. Our results provide a new insight into a possible mechanism of action of EGb761. This study provides a rational basis for the therapeutic application of EGb761 in the treatment of AD.  相似文献   

11.
In this study, the effect of bilobalide, a purified terpene lactone component of the Ginkgo biloba extract (EGb 761), and EGb 761 against ischemic injury and against glutamate-induced excitotoxic neuronal death was compared. In the case of ischemic injury, neuronal loss and the levels of mitochondrial DNA (mtDNA)-encoded cytochrome oxidase (COX) subunit III mRNA in the hippocampal regions of gerbils was measured. A significant increase in neuronal death and a significant decrease in COX III mRNA were observed in the hippocampal CA1 neurons at 7-days of reperfusion after 5 min of transient global forebrain ischemia. Oral administration of EGb 761 at 25, 50 and 100 mg/kg/day and bilobalide at 3 and 6 mg/kg/day for 7 days before ischemia progressively protected hippocampal CA1 neurons against ischemia-induced neuronal death and reductions in COX III mRNA. In rat cerebellar neuronal cultures, addition of bilobalide or EGb 761 protected in a dose-dependent manner against glutamate-induced excitotoxic neuronal death [effective concentration (EC50) = 5 microg/ml (12 microM) forbilobalide and 100 microg/ml for EGb 761]. These results suggest thatboth EGb 761 and bilobalide protect against ischemia-induced neuronal death in vivo and glutamate-induced neuronal death in vitro by synergistic mechanisms involving anti-excitotoxicity, inhibition of free radical generation, scavenging of reactive oxygen species, and regulation of mitochondrial gene expression.  相似文献   

12.
Standardized Ginkgo biloba extract EGb761 is known to have multivalent properties such as anti-oxidation and anti-apoptosis. In this study, we determined in rat pheochromocytoma (PC12) cells effects of EGb761 treatment on oxidative damage under three different conditions of serum supply: normal growth medium (NGM), serum deprivation (SE) and serum deprivation followed by re-supply (SERS). It was found that, under the condition of serum deprivation, oxidative damage induced less cell death than the condition of serum supply. This appears to be related to inhibition of mitochondrial metabolism. Moreover, after serum deprivation, serum re-supply exacerbated cell necrosis, possibly through enhancement of oxidative damage. EGb761 could attenuate oxidative damage under the condition of serum supply whereas no protective effect on serum-depleted cells was observed. These results suggest that, there is a synergistic effect between trophic factors and EGb761. EGb761 treatment may protect cells from possible oxidative damage induced by the trophic factors. On the other hand, trophic factors appear to strengthen the protective effect of EGb761. To fully understand the synergistic interaction between antioxidants and trophic factors will help to sort out rational use of drugs in clinic practice.  相似文献   

13.
We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia.  相似文献   

14.
1. The neuroprotective effect of Ginkgo biloba extract (EGb 761) against transient forebrain ischemia following 7 days of reperfusion was studied in male Wistar rats after four-vessel occlusion for 20 min.2. NeuN, a neuronal specific nuclear protein was used for immunohistochemical detection of surviving pyramidal neurons in the hippocampus, as well as counterstaining with hematoxylin in the same sections for detection of neurons that underwent delayed neuronal death and for glial nuclei staining. GFAP immunohistochemistry was used for detection of astrocytes in the studied area of CA1 region.3. In the group of rats pretreated 7 days with Ginkgo biloba extract (EGb 761), following 20 min of ischemia and 7 days of reperfusion without EGb 761, increased number of NeuN immunoreactive cells were counted in the most vulnerable CA1 pyramidal layer of hippocampus. On the other hand, the group of rats with 7 days of EGb 761 pretreatment following 20 min of ischemia and 7 days of reperfusion with EGb 761 showed decreased number of surviving NeuN immunoreactive CA1 pyramidal cells in comparison with the first above-mentioned experimental group.4. Increased number of reactive astrocytes immunolabeled for GFAP (Glial fibrilary acidic protein) was observed in both experimental groups in the stratum oriens and stratum lacunosum and moleculare.5. Twenty minutes of ischemia is lethal for most population of CA1 pyramidal cell layer. Our results showed that prophylactic oral administration of Ginkgo biloba extract (EGb 761) in the dose 40 mg/kg/day during the 7 days protects the most vulnerable CA1 pyramidal cells against 20 min of ischemia.  相似文献   

15.
The present study was conducted to evaluate the different effects of the constituents of EGb761 (Ginkgo biloba Extract) on apoptosis in cerebellar granule cells induced by hydroxyl radicals. The total flavonoid component of EGb761, two pure EGb761 components (rutin and quercetin), and a mixture of flavonoids and terpenes protected cerebellar granule cells from oxidative damage and apoptosis induced by hydroxyl radicals. ESR(electron spin resonance) results showed that the IC50 of the flavonoids for scavenging hydroxyl radicals was almost the same as that of EGb761, even though flavonoids make up only 24% of EGb761, implying that other constituents of EGb761 besides flavonoids can scavenge hydroxyl radicals. Total terpenes of EGb761 did not protect against apoptosis. Flavonoids and terpenes did not show a synergistic effect in this regard. Terpenes did not scavenge hydroxyl radicals directly, which might be related to their "cage-like" structures.  相似文献   

16.
A large body of data suggests that the Alzheimer's amyloid peptide (Abeta) causes degeneration and death of neurons by mechanisms that involve reactive oxygen species. The pathways involved in Abeta-mediated oxidative injury are only partially understood. We theorized that abnormal microaggregates and/or pathological conformations of Abeta peptides may behave as xenobiotics and trigger the induction of NADPH cytochrome P450 reductase (CP450r), an enzyme which, if induced by non-physiological substrates (such as xenobiotics like drugs or other 'foreign molecules'), is known to cause oxidative stress. In order to test this hypothesis, i.e. that Abeta can increase the expression of CP450r, SK-N-SH human neuroblastoma cells were exposed to Abeta25-35 and Abeta1-42 and then examined for induction of this enzyme in immunoblots, using specific antibodies. Following exposure to Abeta peptides, neuroblastoma cells showed a clear-cut induction of CP450r. To determine whether this mechanism is operational in vivo, we investigated the expression of CP450r in a transgenic mouse model of Alzheimer's disease (AD) and in brains from patients afflicted with AD, using an immunocytochemical approach. Tissue sections from brains of transgenic mice exhibited strong immunoreactivity for CP450r, surrounding amyloid deposits. The pattern of expression of CP450r was similar to that exhibited by neuritic and oxidative stress markers. Sections from non-transgenic mice showed no detectable immunoreactivity. Immunostaining of sections from four brains with neuropathologically confirmed AD showed a pattern of abnormality different from transgenic mice that was characterized by abnormal immunoreactivity for CP450r within the cytoplasm of cortical neurons. No labeling was seen in sections from aged-matched control brains. The data showed that CP450r is induced by Alzheimer amyloid peptide and that such a response must be considered as one possible mechanism whereby Abeta causes oxidative stress.  相似文献   

17.
The pathological role of ApoE4 in Alzheimer's disease (AD) is not fully elucidated yet but there is strong evidence that ApoE is involved in Abeta deposition, which is an early hallmark of AD neuropathology. Overexpression of ApoE in neuroblastoma cells (Neuro2a) leads to the generation of an intracellular 13 kDa carboxy-terminal fragment of ApoE comparable to fragments seen in brains of AD patients. ApoE4 generates more of this fragment than ApoE2 and E3 suggesting a potential pathological role of these fragments in Alzheimer's disease. Analysis of this intracellular ApoE4 fragment by protease digest followed by MALDI-TOF mass spectrometry showed the proteolytic cleavage site close to residue 187 of ApoE. We have engineered and expressed the corresponding ApoE fragments in vitro. The recombinant 13 kDa carboxy-terminal fragment inhibited fibril formation of Abeta; this contrasts with the full-length ApoE and the corresponding amino-terminal ApoE fragment. Moreover, we show that the 13 kDa carboxy-terminal fragment of ApoE stabilizes the formation of Abeta hexamers. Complexes of Abeta with the 13 kDa carboxy-terminal ApoE fragment show toxicity in PC12 cells comparable to Abeta fibrils. These data suggest that cleavage of ApoE, leading to the generation of this fragment, contributes to the pathogenic effect of ApoE4 in AD.  相似文献   

18.
19.
Vitiligo is a common skin depigmenting disorder characterized by the loss of functional melanocytes. Its pathogenesis is complicated and oxidative stress plays a critical role in the development of vitiligo. Thus, antioxidant therapy is a promising therapeutic strategy to prevent or even reverse the progression of depigmentation. Ginkgo biloba extract EGb761 has been confirmed to have protective effects on neurons against oxidative stress. Notably, several clinical trials have shown that patients with stable vitiligo achieved repigmentation after taking EGb761. However, the exact mechanism underlying the protective effects of EGb761 on melanocytes against oxidative stress has not been fully elucidated. In the present study, we found that EGb761 effectively protected melanocytes against oxidative stress‐induced apoptosis and alleviated the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation by enhancing the activity of antioxidative enzymes. Furthermore, the antioxidative effect of EGb761 was achieved by activating Nrf2 and its downstream antioxidative genes. In addition, interfering Nrf2 with siRNA abolished the protective effects of EGb761 on melanocytes against oxidative damage. In conclusion, our study proves that EGb761 could protect melanocytes from H2O2‐induced oxidative stress by activating Nrf2. Therefore, EGb761 is supposed to be a potential therapeutic agent for vitiligo.  相似文献   

20.
Melanoma is an aggressive skin cancer. Unfortunately, there is currently no chemotherapeutic agent available to significantly prolong the survival of the most patients with metastatic melanomas. Here we report that the Ginkgo biloba extract (EGb761), one of the most widely sold herbal supplements in the world, potently induces apoptosis in human melanoma cells by disturbing the balance between pro- and anti-apoptosis Bcl-2 family proteins. Treatment with EGb761 induced varying degrees of apoptosis in melanoma cell lines but not in melanocytes. Induction of apoptosis was caspase-dependent and appeared to be mediated by the mitochondrial pathway, in that it was associated with reduction in mitochondrial membrane potential and activation of Bax and Bak. Although EGb761 did not cause significant change in the expression levels of the BH3-only Bcl-2 family proteins Bim, Puma, Noxa, and Bad, it significantly downregulated Mcl-1 in sensitive but not resistant melanoma cells, suggesting a major role of Mcl-1 in regulating apoptosis of melanoma cells induced by EGb761. Indeed, siRNA knockdown of Mcl-1 enhanced EGb761-induced apoptosis, which was associated with increased activation of Bax and Bak. Taken together, these results demonstrate that EGb761 kills melanoma cells through the mitochondrial apoptotic pathway, and that Mcl-1 is a major regulator of sensitivity of melanoma cells to apoptosis induced by EGb761. Therefore, EGb761 with or without in combination with targeting Mcl-1 may be a useful strategy in the treatment of melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号