首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The papovavirus JC virus (JCV) is highly oncogenic in experimental animals but, unlike simian virus 40 (SV40), is severely restricted in its ability to transform cells in culture. We exploited the close genetic relatedness of these two viruses to delimit region(s) of the T protein which can restrict transforming activity. Novel chimeric genomes were produced by exchanging various segments of the JCV and SV40 T-protein-coding regions. These DNA constructs specified early proteins with in-frame substitutions of analogous amino acid sequences. A second set of genomes was prepared which, in addition to chimeric early proteins, contained substituted regulatory regions. The transformation efficiencies of these chimeric genomes were intermediate between those of SV40 and JCV, with the source of T protein exerting a greater effect than that of the regulatory region. The ability of certain constructs to induce efficient transformation required the presence of an SV40 regulatory region or specific sequences within the SV40 early coding region. Cloned cell lines prepared from representative transformants were characterized; the ability to form colonies in soft agarose was investigated, and the presence of viral T and cellular p53 proteins was determined. The various T proteins differed in amount, stability, and the ability to form stable complexes with p53.  相似文献   

3.
Studies were performed to ascertain the relationship of human papovavirus JC to BK virus and to simian virus 40 (SV40) by further restriction endonuclease analysis and by DNA-DNA competition hybridization on membrane filters. Form I DNA extracted from two new isolates from cases of progressive multifocal leukoencephalopathy of human papovaviruses that were JC-like in their antigenic properties were found to yield restriction endonuclease fragmentation patterns similar to those of prototypic JC virus DNA and different from those of BK or SV40. Form I DNA preparations of JC and BK viruses were found to be related to each other and to SV40 DNA to a similar extent, with JC and BK virus DNAs containing sequences homologous to both early and late regions of the SV40 genome. The relatedness in each comparison was less than 50%, and heterologous hybrids between either JC or BK and SV40 DNAs were found to be less stable than homologous SV40-SV40 hybrids in high concentrations of formamide, suggesting substantial mismatch within homologous regions, to the extent of 15 to 30%. The new JC-like isolates were also studied in competition hybridization reactions with SV40 DNA and yielded results similar to those obtained with JC virus.  相似文献   

4.
The structures of recombinant genomes formed by recombination between simian virus 40 (SV40) and adeno-associated virus 2 (AAV) DNAs after either DNA cotransfection or coinfection by virions were characterized. Two types of structures were found. Group A structures, found after cotransfection and in one of seven recombinants arising from coinfection, represented a simple deletion of SV40 sequences replaced by a slightly shorter AAV sequence. Group B structures were found in six of seven recombinants arising after virion coinfection. All contained either the left or right terminal sequences (approximately 250 to 450 bases) of the AAV genome adjacent to the SV40 origin of DNA replication. Only 350 to 650 bases (including the origin) remained of the SV40 sequence. The joined SV40-AAV sequences were present in the recombinant genome as a tandem repeat of a size that can be packaged into SV40 capsids.  相似文献   

5.
《Cytotherapy》2014,16(10):1325-1335
Immunosuppression of patients after hematopoietic stem cell or kidney transplantation potentially leads to reactivation of JC and BK polyomaviruses. In hematopoietic stem cell transplantation, the reactivation rate of BKV can be up to 60%, resulting in severe complications of the urogenital tract, particularly hemorrhagic cystitis and renal dysfunction. After kidney transplantation, BKV reactivation can cause a loss of the graft. JCV can cause progressive multifocal leukoencephalopathy, a lethal disease. Adoptive transfer of donor-derived polyomavirus-specific T cells is an attractive and promising treatment that restores virus-specific cellular immunity. Pioneering work in the early 1990s on the reconstitution of cellular immunity against cytomegalovirus and recent development in the field of monitoring and isolation of antigen-specific T cells paved the way toward a personalized T-cell therapy. Multimer technology and magnetic beads are available to produce untouched T cells in a single-step, good manufacturing practice–compliant procedure. Another exciting aspect of T-cell therapy against polyomaviruses is the fact that both JCV and BKV can be targeted simultaneously because of their high sequence homology. Finally, “designer T cells” can be redirected to recognize polyomavirus antigens with high-affinity T-cell receptors. This review summarizes the state-of-the art technologies and gives an outlook of future developments in the field.  相似文献   

6.
We have found that type II topoisomerase inhibitors have two effects on replicating simian virus 40 genomes in vivo: production of catenated dimers and slowed replication of the last 5% of the genome. This suggests that type II topoisomerase simultaneously decatenates and facilitates replication fork movement at this stage of DNA replication. On the basis of this observation, a detailed model is proposed for the roles of topoisomerases I and II in simian virus 40 DNA replication.  相似文献   

7.
The polypeptide composition of labeled BK virus was compared with that of simian virus 40 (SV40) and polyoma virus by co-electrophoresis of disrupted virions in polyacrylamide gels containing approximately 73% of the capsid protein and had a molecular weight of 39,000. It was smaller than VP1 of SV40 and polyoma virus. The other polypeptides of BK virus were similar in molecular weight to those of SV40. A comparison of the proteins of BK virus and SV40 iodinated with chloramine T before and after disruption in alkaline buffer at pH 10.5 revealed differences between the two viruses in the number and distribution of tyrosines available for iodination. The tryptic peptides of VP1, VP3, VP4, and VP5 combined of SV40 were compared with those of the same polypeptides of BK virus. Among the 19 peptides of VP1 resolved, only two were common to both viruses. The analyses of VP4 and VP5, the histone-like proteins, however, showed more similarity between the viruses, with 6 of 15 resolved peptides in common. The tryptic digests of VP3 were completely different.  相似文献   

8.
Simian immunodeficiency virus (SIV) infection of macaques is remarkably similar to that of human immunodeficiency virus type 1 (HIV-1) in humans, and the SIV-macaque system is a good model for AIDS research. We have constructed an SIV proviral DNA clone that is deleted of 97 nucleotides (nt), i.e., construct SD, at positions (+322 to +418) immediately downstream of the primer binding site (PBS) of SIVmac239. When this construct was transfected into COS-7 cells, the resultant viral progeny were severely impaired with regard to their ability to replicate in C8166 cells. Further deletion analysis showed that a virus termed SD1, containing a deletion of 23 nt (+322 to +344), was able to replicate with wild-type kinetics, while viruses containing deletions of 21 nt (+398 to +418) (construct SD2) or 53 nt (+345 to +397) (construct SD3) displayed diminished capacity in this regard. Both the SD2 and SD3 viruses were also impaired with regard to ability to package viral RNA, while SD1 viruses were not. The SD and SD3 constructs did not revert to increased replication ability in C8166 cells over 6 months in culture. In contrast, long-term passage of the SD2 mutated virus resulted in a restoration of replication capacity, due to the appearance of four separate point mutations. Two of these substitutions were located in leader sequences of viral RNA within the PBS and the dimerization initiation site (DIS), while the other two were located within two distinct Gag proteins, i.e., CA and p6. The biological relevance of three of these point mutations was confirmed by site-directed mutagenesis studies that showed that SD2 viruses containing each of these substitutions had regained a significant degree of viral replication capacity. Thus, leader sequences downstream of the PBS, especially the U5-leader stem and the DIS stem-loop, are important for SIV replication and for packaging of the viral genome.  相似文献   

9.
The monomer form of BK virus (BKV) tumor antigen (T Ag) was immunoprecipitated from extracts of BKV-transformed cells and had a molecular weight of approximately 113,000. This compared with 97,000 for the molecular weight of either BKV or simian virus 40 (SV40) T Ag from lytically infected cells. The SV40 and BKV T Ag's from productively infected cells were compared by examining their methionine-labeled tryptic peptides. Out of a total of 20 SV40-and 21 BKV-specific peptides, there were seven pairs of similar peptides on the basis of ion-exchange chromatography, These coeluting peptides contained approximately 25 to 30% of the total methionine radioactivity. Similar results were obtained when the tryptic peptides of SV40 T Ag from lytically infected cells were compared with those of BKV T Ag from virally transformed cells.  相似文献   

10.
A new variant of simian virus 40 (EL SV40), containing the complete viral DNA separated into two molecules, was isolated. One DNA species contains nearly all of the early (E) SV40 sequences, and the other DNA contains nearly all of the late (L) viral sequences. Each genome was encircled by reiterated viral origins and termini and migrated in agarose gels as covalently closed supercoiled circles. EL SV40 or its progenitor appears to have been generated in human A172 glioblastoma cells, as defective interfering genomes during acute lytic infections, but was selected during the establishment of persistently infected (PI) green monkey cells (TC-7). PI TC-7/SV40 cells contained EL SV40 as the predominant SV40 species. EL SV40 propagated efficiently and rapidly in BSC-1, another line of green monkey cells, where it also formed plaques. EL SV40 stocks generated in BSC-1 cells were shown to be free of wild-type SV40 by a number of criteria. E and L SV40 genomes were also cloned in the bacterial plasmid pBR322. When transfected into BSC-1 cell monolayers, only the combination of E and L genomes produced a lytic infection, followed by the synthesis of EL SV40. However, transfection with E SV40 DNA alone did produce T-antigen, although at reduced frequency.  相似文献   

11.
The bovine papillomavirus (BPV-1), Moloney murine sarcoma virus (MoMuSV) and simian virus 40(SV40) genomes have been shown to contain sequences termed 'enhancers' which activate the expression of linked genes. DNA fragments containing these three enhancers have been inserted into recombinant plasmids upstream from the herpes simplex virus thymidine kinase (tk) gene, and their effect on tk expression monitored. Two types of assay have been used. Firstly, the ability of recombinant plasmids to transform TK- recipient cells to a TK+ phenotype was measured. Secondly, the amount of tk-specific RNA and TK enzyme activity transiently expressed after DNA transfection was determined. Both types of assay gave similar results. The enhancers increased tk gene expression by regulating the amount of full length tk mRNA present shortly after transfection independent of gene copy number. Furthermore, marked species specificity in the relative efficiencies of different enhancers was observed, including that of the BPV-1 enhancer for the first time. The MoMuSV enhancer showed preference for murine fibroblasts, while the papillomavirus enhancer showed a marked preference for bovine cells. In contrast, the SV40 enhancer gave the same relative increase in tk gene expression in the murine, rat, bovine and human cells tested.  相似文献   

12.
We performed experiments to test the suitability of squirrel monkeys (Saimiri sciureus) as an experimental model for BK virus (BKV) and simian virus 40 (SV40) infection. Four squirrel monkeys received intravenous inoculation with BKV Gardner strain, and six squirrel monkeys received intravenous inoculation with SV40 777 strain. Eight of 10 monkeys received immunosuppression therapy, namely, cyclophosphamide subcutaneously either before or both before and after viral inoculation. The presence of viral infection was assessed by quantitative real-time PCR amplification of viral DNA from blood, urine, and 10 tissues. We found that squirrel monkeys were susceptible to infection with BKV, with high viral copy number detected in blood and viral genome detected in all tissues examined. BKV genome was detected in urine from only one monkey, while three monkeys manifested focal interstitial nephritis. BKV T antigen was expressed in renal peritubular capillary endothelial cells. By contrast, SV40 was detected at very low copy numbers in only a few tissues and was not detected in blood. We conclude that the squirrel monkey is a suitable animal for studies of experimental BKV infection and may facilitate studies of viral entry, pathogenesis, and therapy.  相似文献   

13.
14.
For the human polyomaviruses JC virus (JCV) and BK virus (BKV), the first step to a successful infection involves binding to sialic acid moieties located on the surfaces of host cells. By stripping and then reconstituting specific sialic acid linkages on host cells, we show that JCV uses both α(2,3)-linked and α(2,6)-linked sialic acids on N-linked glycoproteins to infect cells. For both JCV and BKV, the sialic acid linkages required for cell surface binding directly correlate with the linkages required for infection. In addition to sialic acid linkage data, these data suggest that the third sugar from the carbohydrate chain terminus is important for virus binding and infection.  相似文献   

15.
Simian virus 40 mutants containing both a tsA mutation (rendering the 90,000 molecular weight [90K] T-antigen thermolabile) and a deletion between 0.54 and 0.59 map units (reducing the size and the amount of the 20K t-antigen) were used to transform Chinese hamster lung cells. The frequencies of transformation by the double mutants were comparable to that of the tsA mutant alone by both the focus and agar assays except when the cells were serum depleted before infection. Growth-arrested cells were transformed (using the agar assay) by the deletion mutants at less than 2% the frequency found when the 20K t-antigen was normal. Growth arrest had very little effect on the temperature sensitivity of the resultant transformed cell lines whether or not the deletion was present.  相似文献   

16.
17.
18.
19.
F8dl is a simian virus 40 early-region deletion mutant that lacks the simian virus 40 DNA sequences between 0.168 and 0.424 map units. Despite this large deletion, cloned F8dl DNA transforms Fisher rat F111 cells and BALB/3T3 clone A31 mouse cells as efficiently as does cloned simian virus 40 wild-type DNA. These results indicate that less than 40% of the large T-antigen-coding sequence is required for efficient transformation.  相似文献   

20.
The small t antigen (t) of simian virus 40, a 174-amino-acid-containing protein, when present together with the other early viral protein, large T antigen (T), plays an important role in the maintenance of simian virus 40-induced neoplastic phenotype in certain cells. Indeed, each protein functions in a complementary manner in this process. The t coding unit is composed of two segments, a 5' region of 246 nucleotides which is identical to that of the corresponding 5' region of the T coding unit and a 3' segment of 276 nucleotides which is unique. Two mutant, t-encoding genomes, one bearing a missense and the other a nonsense mutation at the same point in the t-unique coding region were constructed in vitro and found to be defective in their ability to dissolve the actin cytoskeleton of rat fibroblasts and to complement T in the growth of mouse fibroblasts in soft agar. Therefore, the unique segment of the t gene encodes a portion of the t molecule which is essential to its transformation maintenance function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号