首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitin-calmodulin conjugating activity from cardiac muscle   总被引:1,自引:0,他引:1  
Enzyme activity capable of covalently linking ubiquitin to bovine calmodulin in an ATP-dependent manner has been detected in rabbit cardiac muscle demonstrating that this enzyme occurs not only in reticulocytes but also in other tissues and possibly all tissues and cells which contain calmodulin as intracellular Ca2+-acceptor protein. This is of special interest since a ubiquitin-dependent proteolytic activity could previously not be detected in cardiac muscle. The name ubiquityl-calmodulin synthetase [uCaM-synthetase, ubiquityl:calmodulin ligase (EC 6.3.?.?)] is therefore suggested for this enzyme. In crude cardiac muscle extracts uCaM-Synthetase displays a specific activity of 93 nUnits/mg in comparison to reticulocyte lysate with 270 nUnits/mg as measured by the fluphenazine-Sepharose affinity adsorbent test (FP-test). Analysis of the ubiquitination product (125I-uCaM) by polyacrylamide electrophoresis in the presence of SDS followed by autoradiography reveals a major double band with molecular masses of 27 and 29 kDa (mono-ubiquitination products) respectively. In addition two novel minor bands (17 and 20 kDa) of smaller molecular mass than the monoubiquitination products were detected. These are probably proteolytic breakdown products of uCaM. A model is suggested for a specific function of this synthetase in the Ca2+-dependent breakdown of calmodulin in vertebrate (eukaryotic) cells.  相似文献   

2.
Covalent conjugation of mammalian calmodulin with ubiquitin   总被引:1,自引:0,他引:1  
In this paper it is shown that mammalian calmodulin from bovine testis is a substrate for reticulocyte ubiquitin conjugating activity (UCA) forming a 1:1 covalent conjugate between bovine calmodulin and ubiquitin (uCaM). There is an absolute requirement for Ca2+ in the range of approximately 10 microM for ubiquitination of calmodulin to occur. This novel conjugate (uCaM) shows a Ca2+-dependent mobility change in polyacrylamide gel electrophoresis in the presence of SDS, indicating that the calmodulin-ubiquitin conjugate still retains the mobility change of native calmodulin. This conjugation reaction could be of prime importance for the intracellular turnover of calmodulin in the mammalian cell, although it cannot be excluded that the ubiquitin-calmodulin conjugate might in itself be of biological relevance.  相似文献   

3.
Calmodulin is the natural substrate for ubiquitin-ligation by the enzyme ubiquitin-calmodulin ligase (uCaM-synthetase; EC 6.3.2.21). The activity of this ligase is regulated by the binding of the second messenger Ca2+ to the substrate calmodulin, which increases the activity ca. 10-fold. Up till now, two components of the ligase could be identified: uCaM Syn-F1 and uCaM Syn-F2, the first of which binds to ubiquitin and the second which binds to calmodulin. Since the physiological role of this enzyme is still unclear, this study was designed to examine whether the activity of uCaM-Synthetase in 40 000×g tissue supernatants correlates with the calmodulin content in the various tissues. In reticulocytes, spleen, erythrocytes, testis and brain, which are rich in uCaM synthetase, the tissue contents calculated on the basis of activity measurements were between 4–80-fold higher than in red and white skeletal muscle. These activities did not correlate with the respective calmodulin contents of the tissues indicating that other factors were determining these enzyme levels. A second aim was to gain information on the role of the ATP-ubiquitin-dependent proteolytic pathway in those tissues displaying uCaM synthetase activity. In the reticulocyte system which contains the classical ATP-ubiquitin-dependent proteolytic pathway as measured with 125I-BSA, no ubiquitin-dependent degradation of calmodulin could be detected. We therefore examined the other tissues of the rabbit with the substrate 125I-BSA and succeeded in finding a ubiquitin-independent ATP-dependent proteolytic activity in every case but no ubiquitin-dependent activity. The ubiquitin-independent activity was highest in smooth muscle and red skeletal muscle being ca. 3–4-fold higher than in lung and testis. In 50% of the tissue crude extracts the time curve of calmodulin ubiquitylation progressed through a maximum indicating a dynamic steady state based on conjugate synthesis and decay. If a ubiquitylation pulse of 30 min was followed in liver crude extracts by the addition of EGTA, which specifically inhibits ubiquityl-calmodulin synthesis, a half-life of calmodulin-conjugate decay of 15–20 min is observed. A similar conjugate half-life of ca. 30 min was observed after addition of EDTA excluding that conjugate decay is due to an ATP-dependent proteolytic process. Studying the decay of purified ubiquitin-125I-BH-calmodulin conjugates in cell-free reticulocyte extracts led to the discovery of an ATP-independent isopeptidase activity which splits ubiquitin-calmodulin conjugates without leading to detectable calmodulin fragments. The rapid decay of ubiquitin-calmodulin conjugates in tissue extracts can therefore be plausibly explained by a ubiquityl-calmodulin splitting isopeptidase activity.  相似文献   

4.
A calmodulin inhibitor, trifluoperazine, suppresses ATP-dependent Ca2+ uptake into microsomes prepared from bovine aortic smooth muscle. From this microsomal preparation which we expected to contain calmodulin-dependent Ca2+-transport ATPase [EC 3.6.1.3], we purified (Ca2+-Mg2+)ATPase by calmodulin affinity chromatography. The protein peak eluted by EDTA had calmodulin-dependent (Ca2+-Mg2+)ATPase activity. The major band (135,000 daltons) obtained after sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) accounted for about 80% of the total protein eluted. This major band was phosphorylated by [gamma-32P]ATP in a Ca2+-dependent manner. All the 32P incorporated into the major band was released by hydroxylaminolysis. The ATPase reconstituted in soybean phospholipid liposomes showed ATP, calmodulin-dependent Ca2+ uptake. The affinity of the ATPase for Ca2+, Km, was 7 microM and the maximum ATPase activity was 1.4 mumol/mg/min. These values were changed to 0.17 microM and 3.5 mumol/mg/min, respectively by the addition of calmodulin. The activity of the purified (Ca2+-Mg2+)ATPase was inhibited by orthovanadate, and the concentration required for half-maximal inhibition was about 1.8 microM which is close to that of plasma membrane ATPases. Judging from the effect of orthovanadate and the molecular weight, the purified (Ca2+-Mg2+)ATPase was considered to have originated from the plasma membrane not from the sarcoplasmic reticulum.  相似文献   

5.
Recently we were able to show that calmodulin from vertebrates, plants (spinach) and the mold Neurospora crassa can be covalently conjugated to ubiquitin in a Ca(2+)-dependent manner by ubiquityl-calmodulin synthetase (uCaM-synthetase) from mammalian sources [R. Ziegenhagen and H.P. Jennissen (1990) FEBS Lett. 273, 253-256]. It was therefore of high interest to investigate whether this covalent modification of calmodulin also occurs in one of the simplest eukaryotes, the unicellular Saccharomyces cerevisiae. Yeast calmodulin was therefore purified from bakers yeast. In contrast to calmodulin from spinach and N. crassa it does not activate phosphorylase kinase. Crude yeast uCaM-synthetase conjugated ubiquitin Ca(2+)-dependently to yeast and mammalian (bovine) calmodulin. Yeast calmodulin was also a substrate for mammalian (reticulocyte) uCaM-synthetase. As estimated from autoradiograms the monoubiquitination product (first-order conjugate) of yeast calmodulin has an apparent molecular mass of ca. 23-26 kDa and the second-order conjugate an apparent molecular mass of ca. 28-32 kDa. Two to three ubiquitin molecules can be incorporated per yeast calmodulin. Experiments with methylated ubiquitin in the heterologous reticulocyte system indicate that, as with vertebrate calmodulins, only one lysine residue of yeast calmodulin reacts with ubiquitin so that the incorporation of multiple ubiquitin molecules will lead to a polyubiquitin chain. These results also indicate that the ability of coupling ubiquitin to calmodulin was acquired at a very early stage in evolution.  相似文献   

6.
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate.  相似文献   

7.
The (Ca2+ + Mg2+) ATPase of dog heart sarcolemma (Caroni, P., and Carafoli, E. (1980) Nature 283, 765-767) has been characterized. The enzyme possesses an apparent Km (Ca2+) of 0.3 +/- 02 microM, a Vmax of Ca2+ transport of 31 nmol of Ca2+/mg of protein/min, and an apparent Km (ATP) of 30 microM. It is only slightly influenced by monovalent cations and is highly sensitive to orthovanadate (Ki = 0.5 +/- 0.1 microM). The high vanadate sensitivity has been used to distinguish the sarcolemmal and the contaminating sarcoplasmic reticulum Ca2+-dependent ATPase in heart microsomal fractions. Calmodulin has been shown to be present in heart sarcolemma. Its depletion results in the transition of the Ca2+-pumping ATPase to a low Ca2+ affinity; readdition of calmodulin reverses this effect. The Na+/Ca2+ exchange system was not affected by calmodulin. The results of calmodulin extraction can be duplicated by using the calmodulin antagonist trifluoperazine. The calmodulin-depleted Ca2+-ATPase has been solubilized from the sarcolemmal membrane and "purified" on a calmodulin affinity chromatography column. One major (Mr = 150,000) and 3 minor protein bands could be eluted from the column with ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA). The major protein band (72%) has Ca2+-dependent ATPase activity and can be phosphorylated by [gamma]32P]ATP in a Ca2+-dependent reaction.  相似文献   

8.
In plants Ca2+ plays a crucial role as second messenger. Thus calmodulin is one of the most important signal transducing molecules for metabolic regulation in plants. Previously we showed that bovine testis calmodulin can be covalently coupled at one site to ubiquitin in a Ca2(+)-dependent manner in the presence of ATP/Mg2+ by ubiquityl-calmodulin synthetase. Since calmodulin from spinach has 13 amino acid sequence differences to bovine calmodulin - two of them in Ca2(+)-binding loops - it was unclear, whether a conjugation of ubiquitin to this molecule would be possible. In this paper it is shown that calmodulin from spinach and a similar calmodulin from the mold Neurospora crassa can be covalently conjugated to ubiquitin in a Ca2(+)-dependent manner. It is shown that higher molecular mass conjugates containing up to three ubiquitin molecules per calmodulin are obtained. Experiments with methylated ubiquitin demonstrate that, as with vertebrate calmodulins, only one lysine residue is linked to ubiquitin and that the incorporation of additional ubiquitin molecules leads to a polyubiquitin chain.  相似文献   

9.
Both phospholipid/calcium (PL/Ca2+) activated and calmodulin/Ca2+ (CaM/Ca2+)activated protein kinase systems were found in rat pancreatic extracts treated with Sephadex G-25. At least four substrate proteins for PL/Ca2+-activated kinase and one for a CaM/Ca2+-activated kinase were noted. Polymyxin B, an amphipathic antibiotic, was over 100-fold more potent as an inhibitor of PL/Ca2+-dependent protein phosphorylation than of the CaM/Ca2+-dependent system (Ki = app. 7 microM v. 950 microM). Fluphenazine inhibited both PL/Ca2+- and CaM/Ca2+-dependent protein kinases with equal potency, as did dibucaine. Inhibition by polymyxin B of PL/Ca2+-dependent phosphorylation could be overcome by increased amounts of phosphatidylserine. Low concentrations (10(-5)M) of polymyxin B completely inhibited carbachol-stimulated amylase release from intact pancreatic acini. These results indicate that polymyxin B may be useful in delineating the relative roles of PL/Ca2+-dependent and CaM/Ca2+-dependent protein phosphorylation in biological systems and suggest a potential role for the PL/Ca2+-activated kinase in regulation of pancreatic exocrine function.  相似文献   

10.
A monoclonal antibody (2B3) directed against the calmodulin-binding (Ca2+ + Mg2+)-dependent ATPase from pig stomach smooth muscle was prepared. This antibody reacts with a 130,000-Mr protein that co-migrates on SDS/polyacrylamide-gel electrophoresis with the calmodulin-binding (Ca2+ + Mg2+)-ATPase purified from smooth muscle by calmodulin affinity chromatography. The antibody causes partial inhibition of the (Ca2+ + Mg2+)-ATPase activity in plasma membranes from pig stomach smooth muscle, in pig erythrocytes and human erythrocytes. It appears to be directed against a specific functionally important site of the plasmalemmal Ca2+-transport ATPase and acts as a competitive inhibitor of ATP binding. Binding of the antibody does not change the Km of the ATPase for Ca2+ and its inhibitory effect is not altered by the presence of calmodulin. No inhibition of (Ca2+ + Mg2+)-ATPase activity or of the oxalate-stimulated Ca2+ uptake was observed in a pig smooth-muscle vesicle preparation enriched in endoplasmic reticulum. These results confirm the existence in smooth muscle of two different types of Ca2+-transport ATPase: a calmodulin-binding (Ca2+ + Mg2+)-ATPase located in the plasma membrane and a second one confined to the endoplasmic reticulum.  相似文献   

11.
W G Thomas  L Pipolo  H Qian 《FEBS letters》1999,455(3):367-371
To identify regulators of the type 1A angiotensin II receptor (AT1A), we investigated the interaction of cellular proteins with a fusion protein containing the rat AT1A receptor carboxyl-terminus. An approximately 20 kDa cytoplasmic protein interacted with the fusion protein in a Ca2+-dependent manner and was identified as calmodulin. A control peptide with high affinity for Ca2+/calmodulin and a peptide corresponding to a membrane proximal portion of the AT1A receptor carboxyl-terminus with analogy to known calmodulin-binding sequences were synthesised and tested for calmodulin-binding. Using in vitro binding assays combined with gel shift analysis, we demonstrated the formation of complexes between calmodulin and both peptides, which were Ca2+-dependent and of 1:1 stoichiometry. Affinity gels produced from these peptides also purified calmodulin from cell extracts. These results suggest a novel feedback regulation of the AT1A receptor by Ca2+/calmodulin and identify the membrane proximal region of the carboxyl-terminus as a focal point for interactions important for AT1A receptor function.  相似文献   

12.
Mammalian calmodulin containing trimethyllysine 115 can be covalently coupled to ubiquitin in a Ca2+-dependent manner in the presence of ATP/Mg2+ by reticulocyte lysate. This conjugation reaction can be quantitated in a novel test employing fluphenazine-Sepharose. It is shown that at least 3 ubiquitin molecules can be coupled to calmodulin indicating that more than one lysine residue is involved in the ubiquitination reaction. In addition only the free form of calmodulin can be ubiquitinated. Neither calmodulin bound to phosphorylase kinase as an integral subunit (delta-subunit) nor that bound as a peripheral subunit (delta'-subunit) is ubiquitinated. A total binding of equimolar calmodulin to phosphorylase kinase occurs since the affinity of binding of calmodulin to phosphorylase kinase as integral (KCaMm unknown) or peripheral subunit (KCaMm ca. 30-50nM) is several order of magnitude higher than the corresponding affinity of calmodulin for the ubiquitin-conjugating enzyme (KCaMm ca. 8 microM). We conclude that the "protective" effect of phosphorylase kinase towards calmodulin conjugation is due to a changed conformation of bound calmodulin and/or inacessibility of the ubiquitination sites (e.g. at subunit-subunit interface). Thus Ca2+-dependent ubiquitination only of free calmodulin may provide an efficient scavanging mechanism (with subsequent breakdown) for all free calmodulin in excess of that amount which can be bound by the calmodulin-binding proteins in the cell.  相似文献   

13.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

14.
Spontaneous DNA repair in peripheral blood mononuclear cells (PBMC) has been recently described. The aim of this study was to evaluate whether spontaneous DNA repair is Ca(2+)-dependent, as in vitro-stimulated DNA repair. Spontaneous DNA repair in PBMC was measured in a 1mM Ca2+ medium. The effect of extracellular Ca2+ chelation by EGTA, intracellular Ca2+ chelation by bapta-AM, and Ca2+ loading by the ionophore A23187 was examined. The signal transduction pathway was evaluated by inhibiting protein tyrosine kinase with genistein, calmodulin with W7, and calcineurin with cyclosporin A and tacrolimus. Extracellular Ca2+ chelation had no effect on spontaneous DNA repair, while both intracellular chelation and calcium overloading inhibited the DNA repair. Inhibition of protein tyrosine kinase, calmodulin or calcineurin reduced DNA repair. In conclusion, spontaneous DNA repair is mainly Ca(2+)-dependent at a narrow range of intracellular Ca2+ concentrations. The signal transduction cascade includes protein tyrosine kinase, calmodulin, and calcineurin.  相似文献   

15.
Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium.  相似文献   

16.
Caloxin 2A1 is a novel inhibitor of the plasma membrane (PM) Ca(2+)-pump [Am. J. Physiol. Cell Physiol. 280 (2001) C1027]. The PM Ca(2+)-pump is a Ca(2+)-Mg(2+)-ATPase that expels Ca(2+) from cells to help them maintain low concentrations of cytosolic Ca(2+). Caloxin 2A1 inhibits Ca(2+)-Mg(2+)-ATPase in human erythrocyte leaky ghosts. Here we report that this inhibition is non-competitive with respect to the substrates Ca(2+) and ATP and the activator calmodulin. This was anticipated since the high affinity binding site for Ca(2+) and sites for ATP and calmodulin are intracellular whereas caloxin 2A1 is a peptide selected for binding to the second extracellular domain of the pump. Caloxin 2A1 also inhibited the Ca(2+)-dependent formation of the acid stable 140 kDa acylphosphate intermediate from 32P-gamma-ATP. However, it did not inhibit the formation of the acylphosphate intermediate in the reverse direction-from 32P-orthophosphate. Consistent with results on mutagenesis of transmembrane residues in the pump protein, we suggest that caloxin 2A1 inhibits conformational changes required during the reaction cycle of the pump.  相似文献   

17.
Endogenous calmodulin (CaM) in the EGTA-washed cerebral-cortical synaptosomal membrane (SM) preparation was estimated below 3 micrograms/ml protein by the semiquantitative immunoblot analysis (Natsukari, N., Ohta, H. and Fujita, M. (1989) J. Immunol. Methods 125, 159-166). Membrane-bound CaM was immunoelectron-microscopically demonstrated in EGTA-washed, non-treated (control), and Ca(2+)-treated cerebral-cortical synaptosomal membranes (SM) as well as for the SM enriched with added CaM. The density of CaM increased in the above order. CaM-dependent adenylate cyclase and CaM-dependent protein kinase II (CaM-kinase II) activities were restored, whereas the phosphodiesterase (PDE) activity was not affected by exogenous CaM over all the Ca2+ concentrations tested. Adenylate cyclase at pCa 6.2 was synergistically activated either by GTP and CaM or by CaM and beta-adrenergic agonist, (+/-)-isoproterenol, reflecting the intactness of signal transduction pathway in the SM. Also demonstrated were the presence of protein kinase A, CaM-kinase II, and their endogenous substrates in the SM. Based on 32P-autoradiography and 125I-CaM overlay data certain CaM-binding proteins such as CaM-kinase II and synapsin I were identified on SDS-PAGE. Ca(2+)-dependent and -independent CaMBPs were distinguished by 125I-CaM gel overlay with and without Ca2+. The former had bigger molecular size (greater than or equal to 49 kDa) than the latter (less than or equal to 34 kDa). Yield of Ca(2+)-dependent CaMBPs was not affected by Ca2+ concentration during preparation of the SM while that of Ca(2+)-independent CaMBPs was reduced by exposure to 100 microM Ca2+. In contrast with the CaMBPs of brain SM, those of enterocyte and eyrthrocyte plasma membranes especially, microvillous membrane of the enterocyte, showed quite distinct CaMBP profiles. The present findings suggested that the EGTA-washed SM preparation made a useful system for studying the role of CaM in the brain SM.  相似文献   

18.
We describe the design, characterization and application of a new genetically encoded fluorescent biosensor for intracellular detection of both free Ca(2+)-calmodulin and apocalmodulin, which together comprise the available calmodulin concentration. The biosensor binds both forms of calmodulin with an apparent Kd value of 3 microM, and has kinetic properties making it suitable for monitoring dynamic changes on a subsecond time scale. It can be used in conjunction with the fluorescent Ca(2+)-indicator, indo-1, allowing the available calmodulin and free Ca2+ concentrations to be monitored concurrently. We have determined an intracellular available calmodulin concentration of 8.8 +/- 2.2 microM under resting conditions in a human kidney cell line stably expressing the biosensor. Elevation of the intracellular free Ca2+ concentration by agonist, store-operated Ca(2+)-entry or ionophore results in Ca(2+)-dependent consumption of the available calmodulin. A plot of normalized values for the available calmodulin concentration versus the free Ca2+ concentration fits a consumption curve with a cooperativity coefficient of 1.8 and a [Ca2+]50 of 850 nM. There is no detectible binding of calmodulin to the biosensor above a free Ca2+ concentration of approximately 4 microM, consistent with an available calmodulin concentration < or = 200 nM under these conditions, and an overall excess of calmodulin-binding sites.  相似文献   

19.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry gate for active Ca(2+) reabsorption in the kidney. Ca(2+) influx through TRPV5 induces rapid channel inactivation, preventing excessive Ca(2+) influx. This inactivation is mediated by the last ~30 residues of the carboxy (C) terminus of the channel. Since the Ca(2+)-sensing protein calmodulin has been implicated in Ca(2+)-dependent regulation of several TRP channels, the potential role of calmodulin in TRPV5 function was investigated. High-resolution nuclear magnetic resonance (NMR) spectroscopy revealed a Ca(2+)-dependent interaction between calmodulin and a C-terminal fragment of TRPV5 (residues 696 to 729) in which one calmodulin binds two TRPV5 C termini. The TRPV5 residues involved in calmodulin binding were mutated to study the functional consequence of releasing calmodulin from the C terminus. The point mutants TRPV5-W702A and TRPV5-R706E, lacking calmodulin binding, displayed a strongly diminished Ca(2+)-dependent inactivation compared to wild-type TRPV5, as demonstrated by patch clamp analysis. Finally, parathyroid hormone (PTH) induced protein kinase A (PKA)-dependent phosphorylation of residue T709, which diminished calmodulin binding to TRPV5 and thereby enhanced channel open probability. The TRPV5-W702A mutant exhibited a significantly increased channel open probability and was not further stimulated by PTH. Thus, calmodulin negatively modulates TRPV5 activity, which is reversed by PTH-mediated channel phosphorylation.  相似文献   

20.
The occurrence activity and localization of calmodulin in three heterocystous cyanobacteria of the genus Anabaena were studied. Boiled crude extracts caused a Ca2+-dependent stimulation of NAD kinase. Such a stimulation was blocked by EGTA and chlorpromazine, SDS-PAGE and Western blot analysis using antiserum against eukaryotic spinach calmodulin, revealed a polypeptide of about 17 kDa. Immunogold localization of calmodulin gave a dense gold label in both vegetative cells and heterocysts. The label was mainly confined to the centroplasm in vegetative cells, while it was evenly distributed in the cytoplasm of mature heterocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号