首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stage IV and V copepodites were the dominant forms of Calanus finmarchicus, C. glacialis and C. hyperboreus in Kongsfjorden in late September 1997. Stage IV and V copepodites of C. glacialis and C. hyperboreus were rich in lipid, largely wax esters, and were well fitted to overwinter. Stage IV copepodites of C. finmarchicus were also rich in wax esters, but stage V copepodites of C. finmarchicus were less wax ester-rich. Large size increments between stage IV and V copepodites and between stage V copepodites and females were noted in C. finmarchicus. A very large increment between stage IV and V copepodites was noted for C. glacialis but the size difference between stage V copepodites and females was very small in this species. Particularly large increments were noted between stage IV and V copepodites of C. hyperboreus and also between stage V copepodites and females of this species. The very large, wax ester-rich C. hyperboreus is well adapted to survive the most extreme variations in the Arctic, in Arctic basin waters, whereas the smaller, wax ester-rich C. glacialis is adapted to survive less extreme Arctic variations, as in Arctic shelf waters. The smallest of the three, C. finmarchicus, is best adapted to survive the more predictable waters of the North Atlantic and the Barents Sea. Accepted: 3 January 2000  相似文献   

2.
Summary Between 6 November and 12 December 1988, vertical distributions of Calanus finmarchicus, C. hyperboreus, C. glacialis and Metridia longa were studied at three stations in the Arctic water of the Greenland Sea Gyre (GSG) and compared with two stations in the Atlantic water (AW) of the Westspitsbergen Current. Nine depth strata down to 3,000 m were sampled. C.finmarchicus was most abundant in AW, C. hyperboreus in GSG, M. longa showed no preference and C. glacialis was rare everywhere. Stage composition differed with species and water mass. Vertical distribution varied also with water mass in all species but C. hyperboreus, which was always centered between 1,000 and 1,500 m. The other species were concentrated in the upper 300 m in AW and between 1,000 and 1,500 m in GSG, although not all stages followed this trend. Ontogenetic vertical migration leads to significant dislocations of organic matter from the euphotic zone to great depth in the Greenland Sea. In egg production experiments, C. hyperboreus spawned up to 149 eggs female–1 day–1. Implications of stage composition, sex ratio, and gonad maturation on copepod life cycles are discussed.  相似文献   

3.
The dominant Arctic Ocean and North Atlantic copepods Calanus hyperboreus, Calanus glacialis, and Calanus finmarchicus were collected in the Greenland Sea and fed 13C labelled diatom Thalassiosira weissflogii to follow the transfer and assimilation of carbon, lipid, and individual fatty acids and alcohols. The diatom was grown with 13C for 3 to 5 days and fed then to the copepods. During the feeding period of 14 days, total carbon increased in the copepodite stages V of C. hyperboreus and C. finmarchicus, whereas carbon remained almost constant in C. glacialis females. However, total lipid increased in all species and stages. Highest lipid accumulation occurred in C. hyperboreus in which nearly all lipids were exchanged already after 11 days of feeding. In the other species lipid accumulation made up between 22% (C. finmarchicus) and 45% of total lipid (C. glacialis). The proportion of wax esters was high ranging from 76% of total lipid in C. glacialis to 92% in C. finmarchicus. The fatty acid composition of the alga was dominated by 16:1(n-7), 16:0, 20:5(n-3), and 22:6(n-3). The composition of the copepods was similar because of feeding already on diatoms in the field. In addition, the monounsaturated fatty acids and alcohols, 20:1(n-9) and 22:1(n-11), were major components of the copepod lipids. During the feeding period the highest 13C labelling was always found in the C16 polyunsaturated fatty acids and in the 16:1(n-7) alcohol. Because these components occurred only in trace amounts in the copepods they totally originated from the diet explaining the high labelling. It is noteworthy that the 16:1(n-7) alcohol originated only from the corresponding dietary and not from the abundant internal fatty acid. The long-chain monounsaturated fatty acids and alcohols, 20:1(n-9) and 22:1(n-11), are not existent in phytoplankton and have to be produced de novo. They were less labelled in the smaller species but highly 13C enriched in C. hyperboreus. Although dietary fatty acids were generally retained by the copepods it seems that fatty acids or even lipids were selectively accumulated and turned over due to bodily requirements, and thus, essential polyunsaturated fatty acids were preferentially retained. During feeding mixing, accumulation, and exchange of internal and dietary fatty acids and alcohols occurred as well as utilisation of lipids from both sources for metabolic requirements. The differences in lipid assimilation fit to the different life strategies of the copepods.  相似文献   

4.
Gammarus wilkitzkii, Apherusa glacialis, Onismus nanseni, Onismus glacialis, Boreogadus saida, Parathemisto libellula and Calanus hyperboreus, collected in late June in the Barents Sea marginal ice zone, contained substantial levels (28–51% of the dry mass) of total lipid, the highest levels (51% and 41% respectively) being in  A. glacialis and  C. hyperboreus. Neutral lipids were present in greater amounts than polar lipids in all species. Triacylglycerols were major neutral lipids in A. glacialis, G. wilkitzkii and O. nanseni; triacylglycerols and wax esters were present in similar amounts in O. glacialis; higher levels of wax esters than triacylglycerols occurred in P. libellula; wax esters greatly exceeded triacylglycerols in C. hyperboreus, the opposite being true for B. saida. Diatom fatty acid markers were prominent in the triacylglycerols of G. wilkitzkii, O. nanseni, O. glacialis and, particularly, of  A. glacialis; 20:1(n-9) and 22:1(n-11) moieties were abundant in wax esters of G. wilkitzkii, O. nanseni, O. glacialis, P. libellula and  C. hyperboreus, and in triacylglycerols of B. saida. We deduce that  A. glacialis feeds mainly on ice algae and phytodetritus, G. wilkitzkii and the Onismus spp. feed on calanoid copepods as well as ice algae, whereas P. libellula and especially B. saida feed extensively on calanoid copepods. Accepted: 17 May 1998  相似文献   

5.
The lipid biochemistry of calanoid copepods   总被引:8,自引:2,他引:6  
Sargent  J. R.  Falk-Petersen  S. 《Hydrobiologia》1988,167(1):101-114
Calanus species, particularly those in high latitudes, can accumulate large oil reserves consisting predominantly of wax esters. These wax esters consist predominantly of 16:0, 20:1 (n–9) and 22:1 (n–11) fatty alcohols, mainly formed de novo by the animals from non-lipid dietary precursors, esterified with various fatty acids that are often polyunsaturated fatty acids and largely of dietary, phytoplanktonic origin. Wax ester formation is maximal in copepodite stages IV and V. The lipids are elaborated not primarily for buoyancy regulation but as a source of metabolic energy during overwintering, particularly for reproduction. Large quantities of wax esters are utilised for gonadal development when stage V copepodites mature to females. Development of stage V copepodites to males is not accompanied by wax ester utilisation but males consume large amounts of these lipids in physical activity during reproduction. The role of wax esters in the life history of calanoids is illustrated with particular reference to a comparison of Calanus finmarchicus and Metridia longa in Balsfjord, northern Norway.  相似文献   

6.
Faecal pellet production (FPP) and respiration rates of Calanus glacialis, C. hyperboreus and Metridia longa were measured under land-fast ice in the southeastern Beaufort Sea during the winter–spring transition (March–May 2004) prior to the phytoplankton spring bloom. Despite different overwintering and life cycle strategies and remaining low concentrations of suspended chlorophyll a and particulate organic matter, all species showed increasing FPP rates in spring. A corresponding increase in respiration was only observed in C. glacialis, while respiration remained constant in C. hyperboreus and M. longa. In C. glacialis and C. hyperboreus calculated ingestion covered respiratory expenditures. The constancy of the oil sac volume in M. longa suggests that the animals fed during winter-spring. Pre-bloom grazing as shown here seems to acclimate the copepod populations physiologically for the upcoming high feeding season, so that they are able to resume maximum grazing and reproduction as soon as the phytoplankton bloom is initiated.  相似文献   

7.
The marine copepod Calanus finmarchicus constitutes the substantial amount of biomass in the Arctic and Northern seas. It is unique in that this small crustacean accumulates a high level of wax esters as carbon storage which is mainly comprised of 20:1n−9 and 22:1n−11 alcohols (Alc) linked with various kinds of fatty acids, including n−3 polyunsaturated fatty acids. The absence of 20:1n−9 Alc and 22:1n−11 Alc in diatoms and dinoflagellates, the primary food sources of copepods, suggests the existence of de novo biosynthesis of fatty alcohols in C. finmarchinus. Here, we report identification of three genes, CfFAR1, CfFAR2, and CfFAR3, coding for fatty acyl-CoA reductases involved in the conversion of various fatty acyl-CoAs to their corresponding alcohols. Functional characterization of these genes in yeast indicated that CfFAR1 could use a wide range of saturated fatty acids from C18 to C26 as substrates, CfFAR2 had a narrow range of substrates with only very-long-chain saturated fatty acid 24:0 and 26:0, while CfFAR3 was active towards both saturated (16:0 and 18:0) and unsaturated (18:1 and 20:1) fatty acids producing corresponding alcohols. This finding suggested that these three fatty acyl-CoA reductases are likely responsible for de novo synthesis of a series of fatty alcohol moieties of wax esters in C. finmarchicus.  相似文献   

8.
The objective of this study was to identify the key copepodspecies and their life cycles, and provide evidence for anyseasonal and spatial changes in the copepod community in Malangen,a fjord located 30 km to the south of Tromsø in NorthernNorway (69°30'N, 18°21'E). As a result of high levelsof freshwater run-off in May, the fjord became highly stratifiedwith a sharp pycnocline at 10–30 m depth from May to August.The generation patterns of six copepod species are described.Calanusfinmarchicus produced one generation during the spring thatyear, whereas two generations appeared to be produced by bothPseudocalanus acuspes and P.minutus: one in spring (March-June)and the other in autumn (August-December). However, it is uncertainto what extent P.minutus regularly produces a second generation.Two peaks of CI-CIII Metridia spp. were found; there were differencesalong the length of the fjord in the timing of these, but therelative contributions of M.longa and M.lucens are uncertain.Chiridius armatus CI-CIII peaked in abundance in the spring,which indicates that one main generation was produced at theouter station of the fjord. The copepod community in Malangencould be grouped into three entities according to their numericalabundance during the year one group of highly abundant forms,generally with maxima >50 000 individuals m–3 (C.finmarchicus,Microcalanus sp., Oithona similis , Oithona spinirostris, Acartiasp. and Pseudocalanus spp.), a second group of less abundantspecies with a clear seasonality in abundance, varying from500 to 50 000 individuals m–3 (M.longa, M.lucens, Calanushyperboreus, Carmatus, Tenwra longicornis, Oncaea sp., Euchaetanorvegica and Scolecithrwella minor), and a third group of 14holoplanktonic species, sporadically occurring in the fjord.The study demonstrates clear gradients in the abundance of fivespecies along the length of the fjord: the recruiting generationof C.finmarchicus occurred in higher abundances at the outerstation in May and June compared to the other inner sites. Laterin the season, the reverse situation appeared, in which thepopulation was more abundant in the inner part of the fjorcCalanw hyperboreus increased abruptly in abundance from lowwinter levels to a maximum in April-May, and declined steadilyduring the season (except at the innermost station). Metridialucens, M.longa and C.armatus demonstrated different distributionpatterns in Malangen that matched their preferred areas of distribution.Both M.lucens and C.armatus are known as oceanic and deep-waterspecies, respectively, and these were prevalent at the two outersites in Malangen. Metridia longa is a more nentic species andwas found in highest numbers at the two innermost sites. Themechanisms for the differences in abundance among these specieswithin the fjord are discussed.  相似文献   

9.
Vertical net hauls were taken at thirteen stations between latitude6008'N – 6120'N and longitude 0304'E – 0700'Ein late November 1980. Size and activity characteristics ofCalanus finmarchicus and Metridia longa were studied. Significantdifferences were noted between C. finmarchicus from differentstations. Average body length, dry weight, protein and lipidcontents, gonad development, and ainylase and trypsin activitiesvaried but average gut fullness and trypsin/amylase ratio appearedconstant. M. longa from different stations showed significantdifferences in average body length, dry weight, protein content,amylase and trypsin activities and gut fullness, but there wereno apparent variations in lipid content and trypsin/ainylaseratio. Those animals inhabiting the most seaward station tendedto show the most specific local charactenstics. M. longa hadconsistently lower lipid proportion with higher gut fullnessand digestive-enzyme activities than C. finmarchicus. The resultstherefore indicate that C. finmarchicus had assumed a winterstate of low activity with dependence on stored energy, whileM. longo relied more upon utilization of available food.  相似文献   

10.
The seasonal variations in biomass, abundance and species composition of zooplankton in relation to hydrography and chlorophyll a were studied in the subarctic waters north of Iceland. The sampling was carried out at approximately monthly intervals from February 1993 to February 1994 at eight stations arranged along a transect extending from 66°16′N–18°50′W to 68°00′N–18°50′W. The mean temperature at 50 m depth showed a clear seasonal pattern, with lowest water temperatures in February (∼1.1°C) and the highest in July (∼5.4°C). The spring growth of the phytoplankton began in late March and culminated during mid-April (∼7.0 mg Chl a m−3). Both the biomass and the abundance of total zooplankton were low during the winter and peaked once during the summer in late May (∼4 g m−2 and ∼38,000 individuals m−2). A total of 42 species and taxonomic groups were identified in the samples. Eight taxa contributed ∼90% of the total zooplankton number. Of these Calanus finmarchicus was by far the most abundant species (∼60% of the total zooplankton). Less important groups were ophiuroid larvae (∼9%), Pseudocalanus spp. (∼8%), Metridia longa (∼4%), C. hyperboreus (∼3%), Acartia longiremis (∼2%), chaetognaths (∼2%) and euphausiid larvae (∼2%). The dominant copepods showed two main patterns in seasonal abundance: C. finmarchicus, C. hyperboreus and C. glacialis had one annual peak in numbers in late May, while Pseudocalanus spp., M. longa and A. longiremis showed two maxima during the summer (July) and autumn (October/November). Ophiuroid larvae and chaetognaths (mainly Sagitta elegans) peaked during the middle of July, while the number of euphausiid eggs and larvae was greatest from May to July. The succession in population structure of C. finmarchicus indicated its main spawning to be in April and May, coincident with the phytoplankton spring bloom. A minor spawning was also observed sometime between August and October. However, the offspring from this second spawning contributed only insignificantly to the overwintering stock of C. finmarchicus. Received: 12 September 1997 / Accepted: 1 March 1998  相似文献   

11.
Density- and sound speed contrasts in sub-Arctic zooplankton   总被引:4,自引:0,他引:4  
Summary The sound speed was determined for Meganyctiphanes norvegica, for a mixture of Thysanoessa raschii and Thysanoessa inermis and for a mixture of Calanus finmarchicus and Calanus hyperboreus. The sound speed contrasts ranged from 1.014 to 1.044. Seasonal variations in specific density were measured for Thysanoessa inermis, Thysanoessa raschii, Meganyctiphanes norvegica, Calanus finmarchicus and Calanus hyperboreus. The density of 20 mm T. inermis was lowest in November (1.052 g/cm3) and highest in February–March (1.065 g/cm3). For a 20 mm T. raschii the minimal density was determined in December (1.059 g/cm3) and the maximum in February–March (1.074 g/cm3). M. norvegica individuals of 35 mm also had their lowest density in December (1.060 g/cm3), but reached their maximum density in July (1.076 g/cm3).The density of the euphausiids was found to be size dependent. The density increases as the size decreases. C. finmarchicus and C. hyperboreus had densities less than seawater (1.026 g/cm3) during most of the year. Just before spawning the density increased to 1.028 g/cm3 and 1.036 g/cm3 for C. finmarchicus and C. hyperboreus respectively. The seasonal variations of the density were closely related to the lipid content of the animals.  相似文献   

12.
Arctic species of Calanus are critical to energy transfer between higher and lower trophic levels and their relative abundance, and lipid content is influenced by the alternation of cold and warm years. All three species of Calanus were collected during different periods in Kongsfjorden (Svalbard, 79°N) and adjacent shelf during the abnormally warm year of 2006. Lipid composition and fatty acid structure of individual lipid classes were examined in relation with population structure. Wax esters dominated the neutral lipid fraction. Phosphatidylcholine (PC) dominated the structural lipids followed by phosphatidylethanolamine (PE). PC/PE ratios of 3–6 suggested an increase in PC proportions compared to earlier studies. Depending on the time scale, fatty acids of wax esters illustrated either trophic differences between fjord and offshore conditions for C. hyperboreus and C. finmarchicus or trophic differences related to seasonality for C. glacialis. Similarly, seasonality and trophic conditions controlled the changes in fatty acids of triglycerides, but de novo synthesis of long-chain monoenes suggested energy optimization to cope with immediate metabolic needs. Polar lipids fatty acid composition was species specific and on the long-term (comparison with data from the past decade) composition appears related to changes in trophic environment. Fatty acid composition of PC and PE indicated relative dominance of 20:5n-3 in PC and 22:6n-3 in PE for all three species. The combination of PE and PC acyl chain and phospholipid head group restructuring indicates an inter-annual variability and suggests that membrane lipids are the most likely candidate to evaluate adaptive changes in Arctic copepods to hydrothermal regime.  相似文献   

13.
Protein polymorphisms in six species of the genus Calanus   总被引:1,自引:1,他引:0  
Sevigny  J. M.  McLaren  I. A. 《Hydrobiologia》1988,(1):267-274
Isoelectric focusing was used to study total protein patterns and allozyme variations of six species of the genus Calanus. Each species could be characterized by total protein patterns. The results of the allozyme study indicated, in agreement with previous morphological studies, that the six Calanus species belong to three different groups: the C. finmarchicus group C. finmarchicus, C. glacialis and C. marshallae the C. helgolandicus group (C. helgolandicus, C. pacificus), and C. hyperboreus, which stands apart. There is no indication that there are more loci coding for the proteins studied in species with larger genome sizes. Nor is the degree of enzyme polymorphism related to genome size in these species.  相似文献   

14.
The hyperiid amphipods Themisto libellula and T. abyssorum are important components of Arctic pelagic ecosystems. Both species are carnivorous and prey on mesozooplankton. They represent a substantial food source for marine vertebrates and are a key link between zooplankton secondary production and higher trophic levels. We present data on the total lipid content, lipid class and fatty acid composition of T. libellula and T. abyssorum from northern Fram Strait and the central Arctic Ocean. Both species had moderate to high lipid contents of 14-42% of body dry mass. In T. abyssorum, total lipid content was correlated to body mass, while T. libellula showed sex-related differences in lipid content. Despite their smaller body size, females of T. libellula had higher lipid contents than males. Wax esters represented the major lipid class in both species with 41-43% of total lipid, while triacylglycerols contributed 23-32%. The fatty acid composition was dominated by the long-chain polyunsaturated moieties 20:5(n-3) and 22:6(n-3), short-chain saturated compounds (16:0 and 14:0) and monounsaturated fatty acids of varying length, i.e. 16:1(n-7), 20:1(n-9), 18:1(n-9) and 22:1(n-11). Species-specific and geographic variations in the fatty acid and alcohol patterns were apparently linked to differences in diet and life-cycle. High amounts of the fatty acids and alcohols 20:1(n-9) and 22:1(n-11) in T. libellula indicate predation on herbivorous Calanus copepodids. In addition, elevated levels of 20:5(n-3) in T. libellula indicate a close connection with ice-algal production and the importance of cryo-pelagic coupling processes (i.e. exchange processes between the sea ice and the pelagic communities) for the nutrition of this high-Arctic epipelagic species. In contrast, T. abyssorum is characterised by lower amounts of 20:5(n-3) and its biomarker ratios indicate a higher trophic level. This observation is consistent with the subarctic-boreal origin of T. abyssorum and its occurrence in deeper layers of the Arctic Ocean, where it may feed on omnivorous and/or carnivorous prey.  相似文献   

15.
Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.  相似文献   

16.
Lipids of North Atlantic krill   总被引:2,自引:0,他引:2  
The seasonal variations in the total lipid content, lipid class composition, fatty acid composition, and fatty alcohol composition of Meganyctiphanes norvegica (M. Sars), Thysanoessa inermis (Kr?yer), and T. raschii (M. Sars) have been examined. The total lipid content was highest in the autumn and early winter months and lowest in the spring. In M. norvegica, triacylglycerols served as the only depot lipids, whereas in T. inermis and T. raschii triacylglycerols, wax esters, and glycerophospholipids varied in proportion to the total lipid content. This suggests that glycerophospholipids, as well as wax esters and triacylglycerols, constitute depot lipids in these species. Wax esters and glycerophospholipids were the dominating depot lipids in T. inermis, whereas triacylglycerols and glycerophospholipids were most important in T. raschii. Results suggest that non-depot glycerophospholipids may constitute 3.5-4.5% of the dry weight of the three species of krill examined. T. inermis and T. raschii, from the same catches, had very similar fatty acid compositions for each of the major lipid classes, with the exception of a few minor fatty acids. The major lipid classes in all three species showed complex seasonal variations in the content of the fatty acids that typically reflect the diet, particularly in the case of the triacylglycerols. The results suggest that all the species examined are more herbivorous during the summer than during the autumn and winter. M. norvegica seemed to be significantly more carnivorous than the two Thysanoessa species. The degree of incorporation of individual fatty acids from the diet is probably specific for each lipid class in each krill species. The proportion of polyenoic fatty acids in the glycerophospholipids and the proportion of monoenoic fatty acids in the wax esters may be of importance for the temperature adaptation of T. inermis and T. raschii.  相似文献   

17.
Lipid storage compounds in marine bacteria   总被引:15,自引:0,他引:15  
Forty psychrophile or psychrotrophic crude-oil-utilizing marine bacteria were investigated for their ability to accumulate lipid storage compounds in the cytoplasm during cultivation under nitrogen-limiting conditions. Most of them (73%) were able to accumulate specialized lipids like polyhydroxyalkanoic acids (PHA) while other lipids such as wax esters occurred in two isolates. Accumulation of PHA occurred predominantly at low temperatures (4–20 °C) as demonstrated for three isolates. Electron microscopy revealed polyphosphate inclusions occurring in two isolates in addition to PHA. Cells of the isolate Acinetobacter sp. 211 were able to synthesize and accumulate lipid inclusions during growth on acetate, ethanol, olive oil, hexadecanol and heptadecane. The composition of the lipid inclusions depended on the compounds provided as carbon source. Wax esters and acylglycerols occurred mainly during the cultivation on olive oil; in contrast, wax esters and free alcohols occurred during cultivation on hexadecanol. Total fatty acids in cells of the Acinetobacter sp. 211 amounted to 25% of the cellular dry weight in olive-oil-grown cells. Palmitic acid was the main fatty acid in the lipids when the cells were cultivated on acetate or ethanol (44% and 32% of total fatty acids respectively). In contrast, fatty acids occurring in the lipids during cultivation on hexadecanol, heptadecane or olive oil were related to the carbon source. The fatty acids present in the accumulated lipids consisted predominantly of saturated and unsaturated straight-chain fatty acids with a chain length ranging from 12 to 18 carbon atoms. Analysis of the lipid-granule-associated proteins in cells of Acinetobacter sp. 211 revealed a protein of 39 kDa as the predominant protein species. Received: 2 July 1996 / Received revision: 3 September 1996 / Accepted: 28 September 1996  相似文献   

18.
Calanus glacialis is a key herbivore in Arctic shelf seas. It feeds on primary producers and accumulates large energy reserves, primarily as wax esters. Lipid classes, fatty acids (FAs) and fatty alcohols (FAlcs) from copepodite stage II (CII) to adult females (AF) from Kongsfjorden, Svalbard, were studied in May 2004. Wax esters were the dominating lipid class in all stages, ranging from 34% of total lipids in CII to 60% in CIII–CV. Triacylglycerols increased from 8% of total lipids in CII to 23% in AF. In the earlier stages, 16:1n7 and 16:0 FAs and FAlcs were the major components of the neutral lipids, whereas the later stages were mainly characterized by the long-chained FAs and FAlcs 20:1n9 and 22:1n11. C. glacialis utilizes the short spring bloom to build up lipid reserves, mainly as wax esters, and it also incorporates effectively essential polyunsaturated FAs such as 20:5n3 and 22:6n3 in its polar lipids.  相似文献   

19.
Astthor Gislason 《Hydrobiologia》2003,503(1-3):195-209
Abundance and seasonal vertical distribution of dominant zooplankters in the Irminger Sea was studied from data collected during four cruises between November 1996 and June 1997. In addition, egg production of Calanus finmarchicus was measured during winter, spring and summer 1996–2001. Five taxa constituted >95% of the copepod biomass, C. finmarchicus, Pareuchaeta norvegica, C. hyperboreus, Oithona spp. and Oncaea spp. A seasonal migration pattern was evident for C. finmarchicus, P. norvegica and Oithona spp.: from December to February, they inhabited the deeper layers, whereas, from April to June, they were most abundant in the upper layers. Oncaea spp. also stayed deep during winter and only a very limited part of the population rose to the surface during summer. C. hyperboreus remained deep from December to April, but had virtually disappeared in June. Reproduction of C. finmarchicus took place in May in the surface layers and was linked to the phytoplankton spring bloom. In contrast, reproduction of P. norvegica occurred at depth in February and was uncoupled with the spring bloom. C. hyperboreus did not reproduce in the Irminger Sea. Data on Oithona spp. and Oncaea spp. indicated that the former reproduced between April and June in the upper layers, whereas the latter reproduced year-round at depth. Thus, data on vertical distribution and seasonal stage composition suggested that the dominant copepods are separated, at least partly, at spatial and temporal scales with regard to overwintering and development.  相似文献   

20.
Plankton community structure was analysed during spring at four stations along a transect from the polar ice into open waters of the Barents Sea. The transect mimicks a time span of months in the biological succession during the Arctic summer. The significance of the microbial food web vs the more classical food web was evaluated using carbon budget models. The standing stocks of diatom-dominated phytoplankton and bacteria were generally high especially in connection to ice. The biomass of microzooplankton, dominated by heterotrophic dinoflagellates was significantly high, with specific growth rates following the in situ temperature. The mean ± SE specific growth rate was 0.40±0.12 d?1 for ciliates and 0.24 ± 0.05 d?1 for heterotrophic dinoflagellates, indicating no food limitation. The estimated total carbon requirement for microzooplankton was, at the ice-covered station, approximately 100% of the daily primary production, decreasing to 25% in the open water. Carbon-specific secondary production of the copepodsCalanus finmarchicus (Gunnerus),C. glacialis (Jaschnov),C. hyperboreus (Krøyer) andMetridia longa (Lubbock) were analysed by egg production.C. finmarchicus andM. longa were productive at all stations, including the ice-covered locations, with a maximum at 0.08 d?1 and 0.035 d?1, respectively. The other, more Arctic-related,Calanus spp. were virtually outspawned. The standing stock of copepods was only 10–20% of the total microbial grazer biomass. The community growth and grazing by copepods showed significantly less quantitative importance for the pelagic carbon flow than the microbial processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号