首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurotrophins are essential for the development and survival of the catecholaminergic neurons. GTP cyclohydrolase I (GCH) is the first and rate-limiting enzyme in the biosynthesis of 5,6,7,8-tertahydrobiopterin (BH4), the required cofactor for tyrosine hydroxylase. Previously, we reported that TH requires the Ras/mitogen-activated protein kinase kinase (MEK) pathway for its induction by nerve growth factor (NGF). Here, we examined intracellular signals required for NGF-induced expression of the GCH gene in PC12D cells. The activity of GCH was increased up to 5-fold after the NGF treatment, and the increase was repressed by pretreatment with U0126, an MEK1/2 inhibitor, but not with protein kinase A (PKA), phosphoinositide 3-kinase (PI3K), p38 mitogen-activated protein kinase (MAPK), and c-Jun NH2-terminal kinase (JNK) inhibitors. Induction of GCH mRNA by NGF was also abolished by pretreatment with U0126. The human GCH promoter activity was significantly enhanced by NGF treatment. Deletion analysis showed that the 465-bp 5'-flanking region is responsible for NGF-enhanced promoter activity. These data suggest that the Ras-MEK pathway is required for coordinate expression of the GCH and TH genes induced by neurotrophins.  相似文献   

2.
In addition to VPAC1 and VPAC2, PAC1 is involved in the pleiotropic action of pituitary adenylate cyclase activating polypeptide (PACAP) in the CNS. A luciferase reporter assay for the human PAC1 gene (-2160/+268) revealed that NGF treatment significantly augments the promoter activity of the PAC1 gene. Moreover, the Sp1 site at -282/-273 was shown to be essential for the NGF-augmented promoter activity of the PAC1 gene. Treatment with U0126, an MEK inhibitor, or Mithramycin A, an Sp1 inhibitor, significantly attenuated promoter activity. These results indicate that activation of Sp1 by the Ras/MAPK pathway might participate in neuron specific expression of the PAC1 gene.  相似文献   

3.
4.
An HJ  Lee H  Paik SG 《Molecules and cells》2011,31(6):579-583
We have previously shown that Ras mediates NO-induced BNIP3 expression via the MEK-E RK-HIF-1 pathway i n mouse macrophages, and that NO-induced death results at least in part from the induction of BNIP3. In the present study, we describe another aspect of Ras regulation of BNIP3 expression in pancreatic cancer cells. Human BNIP3 promoter-driven luciferase activity was efficiently induced by activated Ras in AsPC-1, Miapaca-2, PK-1 and PANC-1 cells. However, expression of endogenous BNIP3 was not induced, and BNIP3 up-regulation by hypoxia was also inhibited. Treatment of the cells with the DNMT inhibitor, 5-aza-2-deoxycytidine, restored BNIP3 induction, indicating that DNA methylation of the BNIP3 promoter was responsible for the inhibition of BNIP3 induction. Furthermore, inhibition of the MEK pathway with U0126 reduced DNMT1 expression, but not that of DNMT3a and 3b, and restored the hypoxia-inducibility of BNIP3, suggesting that the DNA methylation of the BNIP3 promoter was mediated by DNMT1 via the MEK pathway.  相似文献   

5.
6.
7.
Nerve growth factor (NGF) exerts anti-apoptotic, trophic and differentiating actions on sympathetic neurons and cholinergic cells of the basal forebrain and activates the expression of genes regulating the synthesis and storage of the neurotransmitter acetylcholine (ACh). We have been studying the intracellular signaling pathways involved in this process. Although, in the rat pheochromocytoma cell line PC12, NGF strongly activates the mitogen-activated protein kinase (MAPK) pathway, prolonged inhibition of MAPK kinase (MEK) activity by PD98059 or U0126 did not affect the ability of NGF to up-regulate choline acetyltransferase (ChAT) or to increase intracellular ACh levels. In contrast, the treatment with the phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002, but not with its inactive analogue LY303511, completely abolished the NGF-induced production of ACh. Inhibition of PI3K also eliminated the NGF effect on the intracellular ACh level in primary cultures of septal neurons from E18 mouse embryos. Blocking the PI3K pathway prevented the activation of cholinergic gene expression, as demonstrated in RT/PCR assays and in transient transfections of PC12 cells with cholinergic locus promoter-luciferase reporter constructs. These results indicate that the PI3K pathway, but not the MEK/MAPK pathway, is the mediator of NGF-induced cholinergic differentiation.  相似文献   

8.
Extracellular signal-regulated protein kinases (ERKs) are important in many cellular functions. We and others have previously reported that prolonged exposure of gastric parietal cells to epidermal growth factor (EGF) enhanced gastric acid secretion stimulated by secretagogues via ERKs. In this study, we examined whether ERKs regulated H(+),K(+)-ATPase alpha-subunit gene expression using a gastric cancer cell line, AGS. EGF induced ERK activity time- and dose-dependently with a maximal effect observed at 10 min and 10 nM, respectively. The MEK inhibitors, U0126 and PD-98059, dose-dependently inhibited the ERK activity stimulated by EGF. To test H(+),K(+)-ATPase alpha-subunit gene expression, we transfected AGS cells with a plasmid containing a canine H(+),K(+)-ATPase alpha-subunit gene promoter fused to a luciferase reporter gene. EGF induced luciferase activity in transfected cells; this effect was inhibited by the MEK inhibitors, suggesting that EGF-induced gene expression involved the ERK pathway. When AGS cells were transfected with the reporter plasmids in conjunction with an expression vector encoding constitutively active MEK1, luciferase activity was strongly enhanced; this effect was attenuated by the MEK inhibitors or by an additional cotransfection of dominant negative MEK1. Taken together, our results led us to conclude that the ERK pathway may mediate H(+),K(+)-ATPase alpha-subunit gene expression, contributing to gastric acid secretion in parietal cells.  相似文献   

9.
10.
We demonstrate that exposure of post-confluent 3T3-L1 preadipocytes to insulin, isobutylmethylxanthine (MIX), dexamethasone (DEX), and fetal bovine serum induces a rapid but transient activation of MEK1 as indicated by extensive phosphorylation of ERK1 and ERK2 during the initial 2 h of adipogenesis. Inhibition of this activity by treating the cells with a MEK1-specific inhibitor (U0126 or PD98059) prior to the induction of differentiation significantly attenuated the expression of peroxisome proliferator-activated receptor (PPAR) gamma, CCAAT/enhancer-binding protein (C/EBP) alpha, perilipin, and adipocyte-specific fatty acid-binding protein (aP2). Treating the preadipocytes with troglitazone, a potent PPARgamma ligand, could circumvent the inhibition of adipogenic gene expression by U0126. Fibroblast growth factor-2 (FGF-2), in the presence of dexamethasone, isobutylmethylxanthine, and insulin, induces a prolonged activation of the MEK/ERK signaling pathway, which lasts for at least 12 h post-induction, and this activity is less sensitive to the MEK inhibitors. Consequently, preadipocytes treated with U0126 in the presence of fibroblast growth factor-2 (FGF-2) express normal post-induction levels of MEK activity, and, in so doing, are capable of undergoing adipogenesis. We further show that activation of MEK1 significantly enhances the transactivation of the C/EBPalpha minimal promoter during the early phase of the differentiation process. Our results suggest that activation of the MEK/ERK signaling pathway during the initial 12 h of adipogenesis enhances the activity of factors that regulate both C/EBPalpha and PPARgamma expression.  相似文献   

11.
12.
Connective tissue growth factor (CTGF, CCN2) is overexpressed in pancreatic cancer. We mapped the minimal CCN2 promoter active in PANC-1 cells, a human pancreatic cancer cell line. Within this region, Sp1, BCE-1 and Ets elements were important for the activity of the CCN2 promoter. Constitutive hyperactivated ras is a hallmark of cancers, including that of the pancreas. Treatment of PANC-1 cells with the MEK inhibitor U0126 or the Sp1 inhibitor mithramycin reduced CCN2 mRNA and promoter activity. Mutation of the BCE-1, but not Sp1 or Ets, site abolished the responsiveness of the CCN2 promoter to U0126. Overexpressing constitutively active MEK1 or ras activated CCN2 promoter activity. Thus CCN2 is likely to act downstream of ras in PANC-1 cells. CCN2 is overexpressed in cancer cells. Activated ras/MEK/ERK is a hallmark of cancer, and we have shown that the elevated CCN2 expression in pancreatic cancer cells is dependent on this pathway.  相似文献   

13.
14.
15.
Adenylate cyclase-activating polypeptide 1 (ADCYAP1) binds both Gs- and Gq-coupled receptors and stimulates adenylate cyclase/cAMP and protein kinase C/mitogen-activated protein kinase 3/1 (MAPK3/1) signaling pathways in pituitary gonadotrophs. In this study, we investigated the cAMP and MAPK3/1 signaling pathways induced by ADCYAP1 stimulation and examined the effects of ADCYAP1 on the expression of gonadotropin subunit genes using a clonal gonadotroph cell line, LbetaT2. ADCYAP1 increased intracellular cAMP accumulation up to 19-fold in LbetaT2 cells. Common alpha-glycoprotein subunit gene (Cga) promoter activity was strongly activated by both ADCYAP1 and the cyclic-AMP analog, 8-(4-chlorophenylthio) adenosine 3',5'-cyclic monophosphate (CPT-cAMP). Both had little effect on luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) promoter activities. Cga promoter activity was significantly increased by transfection with constitutively active cAMP-dependent protein kinase (PKA). Activities of the Lhb and Fshb promoters were only modestly increased. Both ADCYAP1 and CPT-cAMP induced MAPK3/1 activation in LbetaT2 cells. The MEK inhibitor, U0126, and the PKA inhibitors, H89 and cAMP-dependent protein kinase peptide inhibitor (PKI), completely inhibited MAPK3/1 activation by either ADCYAP1 or CPT-cAMP. Using luciferase reporter constructs containing cis-elements, the cAMP response element (Cre) promoter was stimulated about 4-fold by ADCYAP1. ADCYAP1-induced Cre promoter activity was completely inhibited by H89, but not by U0126. ADCYAP1 also increased the activity of the serum response element (Sre) promoter, a target for MAPK3/1, and treatment of the cells with U0126 completely inhibited ADCYAP1-induced Sre promoter activity. ADCYAP1-increased Cga promoter activity was inhibited partially by both H89 and U0126. Although combining the inhibitors showed an additive inhibition effect, it did not result in complete inhibition. These results suggest that in LbetaT2 cells, ADCYAP1 mainly increases Cga through activation of PKA and MAPK3/1, as well as through an additional unknown pathway.  相似文献   

16.
Nitric oxide (NO) produced by NO synthases causes nitration and nitrosylation of cellular factors. We have shown previously that endogenously produced or exogenously added NO induces expression of BNIP3 (Bcl-2/adenovirus E1B 19 kDa-interacting protein 3), leading to death of macrophages (Yook, Y.-H., Kang, K.-H., Maeng, O., Kim, T.-R., Lee, J.-O., Kang, K.-i., Kim, Y.-S., Paik, S.-G., and Lee, H. (2004) Biochem. Biophys. Res. Commun. 321, 298-305). We now provide evidence that Ras mediates NO-induced BNIP3 expression via the MEK/ERK/hypoxia-inducible factor (HIF)-1 pathway. (a) ras-Q61L, a constitutively active form of Ras, up-regulated BNIP3 protein expression by enhancing Bnip3 promoter activity, and ras-S17N, a dominant-negative form, and ras-C118S, an S-nitrosylation mutant, blocked NO-induced BNIP3 expression, suggesting that Ras acts downstream of NO and that NO activates Ras by nitrosylation. (b) U0126, a specific MEK inhibitor, completely abolished BNIP3 expression and the stimulation of promoter activity by NO and Ras, whereas 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, SB203580, and wortmannin, specific inhibitors of soluble guanylyl cyclase, p38 MAPK, and phosphatidylinositol 3-kinase, respectively, had no effect. Ras, MEK1/2, and ERK1/2 were sequentially activated by NO treatment of macrophages. (c) Mutation of the HIF-1-binding site (hypoxia-response element) in the Bnip3 promoter abolished BNIP3 induction, and HIF-1alpha was strongly induced by NO. (d) Transient expression of activated Ras promoted macrophage death, as did NO, and this Ras-mediated cell death was inhibited by silencing BNIP3 expression. These results suggest that NO-induced death of macrophages is mediated, at least in part, by BNIP3 induction.  相似文献   

17.
18.
19.
20.
Constitutive activation of mitogen-activated protein kinase (MAPK) pathway is implicated in a variety of human malignancies especially those that carry Ras mutations and is currently exploited as a cancer therapeutic target. The variability of response by cancer cells to the inhibition of the Ras/MAPK pathway both in vivo and in vitro, however, suggests that the genetic background of the tumor cell may modulate the effectiveness of this directed therapeutic. In a panel of colorectal cancer cell lines that carry Ras mutations and have constitutively active MEK/MAPK, we found that inhibition of the MAPK upstream kinase MEK by the small molecular MEK inhibitor U0126 induced cell death only in p53 wild-type cells. By contrast, p53-deficient cells were not affected by blocking the MEK/MAPK pathway. Using isogenic colon cancer cell lines and RNA interference, we show that loss of p53 significantly reduces MAPK phosphorylation and renders cells resistant to U0126 treatment. These findings reveal a critical role for p53 in MAPK-driven cell survival and place p53 upstream in the control cascade of MAPK activity. The therapeutic implication of these observations is that MAPK inhibitors will be most beneficial as a therapeutic agent in p53 normal colon cancers where constitutively active MAPK resulting from a Ras mutation is required for cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号