首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect evidence suggests that the permeability of connexin 43 (Cx43) gap-junctional channels (connexons) to small organic molecules (M(r) < 1,000) is decreased by protein kinase C (PKC)-mediated phosphorylation of Ser-368. However, it is currently unknown whether this effect is produced directly by phosphorylation of this residue or whether cytoplasmic regulatory factors are required for the decrease in Cx43 gap-junctional channel permeability. Here we studied the effects of PKC-mediated phosphorylation on purified recombinant wild-type Cx43 and a PKC-unresponsive mutant (S368A). Our studies show that (a) PKC phosphorylates Ser-368, (b) the phosphorylation by PKC of purified and reconstituted connexons abolishes sucrose and Lucifer Yellow permeability, (c) the regulation of Cx43 by PKC is the direct result of phosphorylation of Ser-368 and does not involve intermediary regulatory factors, and (d) phosphorylation of Ser-368 produces a conformational change in purified Cx43 as demonstrated by changes in intrinsic Trp fluorescence and proteolytic digestion pattern. We conclude that phosphorylation of Ser-368 by PKC induces a conformational change of Cx43 that results in a decrease in connexon permeability.  相似文献   

2.
We previously reported that epidermal growth factor (EGF) induced the disruption of gap junctional communication (gjc) and serine phosphorylation of connexin43 (Cx43) in T51B rat liver epithelial cells. However, the cascade of events linking EGF receptor activation to these particular responses have not been fully characterized. Furthermore, the serine kinase(s) acting directly on Cx43 remain unidentified. In the current study, we demonstrate that downmodulation of 12-0-tetradecanoylphorbol 13-acetate (TPA)-sensitive protein kinase C (PKC) activity does not affect EGF's ability to reduce junctional permeability or phosphorylate Cx43 in T51B cells. EGF in the presence or absence of chronic TPA treatment stimulated marked increases in Cx43 phosphorylation on numerous sites as determined by two-dimensional tryptic phosphopeptide mapping. Computer-assisted sequence analysis of Cx43 identified several protein kinase phosphorylation consensus sites including two sites for mitogen-activated protein (MAP) kinase. EGF stimulated activation of MAP kinase in a time- and dose-dependent manner where the kinetics of kinase activity corroborated its possible involvement in mediating EGF's effects. Moreover, purified MAP kinase directly phosphorylated Cx43 on serine residues in vitro. Two-dimensional tryptic and chymotryptic phosphopeptide mapping demonstrated that the in vitro phosphopeptides represented a specific subset of the in vivo phosphopeptides produced in response to EGF after chronic TPA treatment. Therefore, EGF-induced disruption of gjc and phosphorylation of Cx43 may be mediated in part by MAP kinase in vivo.  相似文献   

3.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

4.
Phosphorylation of connexin43 (Cx43) on serine368 (S368) has been shown to decrease gap junctional communication via a reduction in unitary channel conductance. Examination of phosphoserine368 (pS368) in normal human skin tissue using a phosphorylation site-specific antibody showed relatively even distribution throughout the epidermal layers. However, 24 h after wounding, but not at 6 or 72 h, pS368 levels were dramatically increased in basal keratinocytes and essentially lost from suprabasal layers adjacent to the wound (i.e., within 200 microm of it). Scratch wounding of primary human keratinocytes caused a protein kinase C (PKC)-dependent increase in pS368 in cells adjacent to the scratch, with a time course similar to that found in the wounds. Keratinocytes at the edge of the scratch also transferred dye much less efficiently at 24 h, in a manner dependent on PKC. However, keratinocyte migration to fill the scratch required early (within <6 h) gap junctional communication. Our evidence indicates that PKC-dependent phosphorylation of Cx43 at S368 creates dynamic communication compartments that can temporally and spatially regulate wound healing.  相似文献   

5.
6.
Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43. The FRET signal of this reporter is inversely related to the phosphorylation of serine 368 of Cx43. By activating PKC with the phorbol ester phorbol 12,13-dibutyrate (PDBu) or a natural stimulant, UTP, time lapse live cell imaging movies indicated phosphorylated Ser-368 Cx43 separated into discrete domains within gap junctions and was internalized in small vesicles, after which it was degraded by lysosomes and proteasomes. Mutation of Ser-368 to an Ala eliminated the response to PDBu and changes in phosphorylation of the reporter. A phosphatase inhibitor, calyculin A, does not change this pattern, indicating PKC phosphorylation causes degradation of Cx43 without dephosphorylation, which is in accordance with current hypotheses that cells control their intercellular communication by a fast and constant turnover of connexins, using phosphorylation as part of this mechanism.  相似文献   

7.
It has been shown that cholesterol modulates activity of protein kinase C (PKC), and PKC phosphorylates connexin 43 (Cx43) to regulate its function, respectively. However, it is not known whether cholesterol modulates function of Cx43 through regulating activity of PKC. In the present study, we demonstrated that cholesterol enrichment reduced the dye transfer ability of Cx43 in cultured H9c2 cells. Western blot analysis indicated that cholesterol enrichment enhanced the phosphorylated state of Cx43. Immunofluorescent images showed that cholesterol enrichment made the Cx43 distribution from condensed to diffused manner in the interface between the cells. In cholesterol enriched cells, PKC antagonists partially restored the dye transfer ability among the cells, downregulated the phosphorylation of Cx43 and redistributed Cx43 from the diffused manner to the condensed manner in the cell interface. In addition, reduction of cholesterol level suppressed PKC activity to phosphorylate Cx43 and restored Cx43 function in PKC agonist-treated cells. Furthermore, we demonstrated that cholesterol enrichment upregulated the phosphorylated state of Cx43 at Ser368, while PKC antagonists reversed the effect. Taken together, cholesterol level in the cells plays important roles in regulating Cx43 function through activation of the PKC signaling pathway.  相似文献   

8.
Gap junctions (GJs) exhibit a complex modus of assembly and degradation to maintain balanced intercellular communication (GJIC). Several growth factors, including vascular endothelial growth factor (VEGF), have been reported to disrupt cell–cell junctions and abolish GJIC. VEGF directly stimulates VEGF-receptor tyrosine kinases on endothelial cell surfaces. Exposing primary porcine pulmonary artery endothelial cells (PAECs) to VEGF for 15 min resulted in a rapid and almost complete loss of connexin43 (Cx43) GJs at cell–cell appositions and a concomitant increase in cytoplasmic, vesicular Cx43. After prolonged incubation periods (60 min), Cx43 GJs reformed and intracellular Cx43 were restored to levels observed before treatment. GJ internalization correlated with efficient inhibition of GJIC, up to 2.8-fold increased phosphorylation of Cx43 serine residues 255, 262, 279/282, and 368, and appeared to be clathrin driven. Phosphorylation of serines 255, 262, and 279/282 was mediated by MAPK, whereas serine 368 phosphorylation was mediated by PKC. Pharmacological inhibition of both signaling pathways significantly reduced Cx43 phosphorylation and GJ internalization. Together, our results indicate that growth factors such as VEGF activate a hierarchical kinase program—including PKC and MAPK—that induces GJ internalization via phosphorylation of well-known regulatory amino acid residues located in the Cx43 C-terminal tail.  相似文献   

9.
Disruption of gap junctional communication (GJC) by various compounds, including growth factors and tumor promoters, is believed to be modulated by the phosphorylation of a gap junctional protein, connexin43 (Cx43). We have previously demonstrated a platelet-derived growth factor (PDGF)-induced blockade of GJC and phosphorylation of Cx43 in T51B rat liver epithelial cells expressing wild-type PDGF receptor beta (PDGFr beta). Both of these actions of PDGF required participation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). Similar requirements of MAPK were suggested in the modulation of GJC by other agents, including epidermal growth factor (EGF) and lysophosphatidic acid (LPA). Since many of these agents activate additional protein kinases, our present study examined whether activation of MAPK was sufficient for Cx43 phosphorylation and GJC blockade. By utilizing a variety of MAPK activators, we now show that activation of MAPK is not always associated with either Cx43 phosphorylation or disruption of GJC, which suggests a requirement for additional factors. Furthermore, pretreatment with hydrogen peroxide (H2O2), a potent MAPK activator but inefficient GJC/Cx43 modulator, abrogated PDGF- or TPA-induced disruption of GJC. While a 5 min H2O2 pretreatment abolished both PDGF- and TPA-induced Cx43 phosphorylation and GJC blockade, a simultaneous H2O2 treatment interfered only with GJC closure but not with the phosphorylation of Cx43 induced by PDGF and TPA. This finding indicates that, in addition to the Cx43 phosphorylation step, inhibition of GJC requires interaction with other components. H2O2-mediated abrogation of PDGF/TPA signaling can be neutralized by the antioxidant N-acetylcysteine (NAC) or by the tyrosine kinase inhibitor genistein. Taken together, our results suggest that disruption of GJC is not solely mediated by either activated MAPK or Cx43 phosphorylation but requires the participation of additional kinases and regulatory components. This complex mode of regulation is perhaps essential for the proposed functional role of GJC.  相似文献   

10.
Cell-cell communication via connexin-43 (Cx43)-based gap junctions is transiently inhibited by certain mitogens, but the underlying regulatory mechanisms are incompletely understood. Our previous studies have implicated the c-Src tyrosine kinase in mediating transient closure of Cx43-based gap junctions in normal fibroblasts. Here we show that activated c-Src (c-SrcK(+)) phosphorylates the COOH-terminal tail of Cx43, both in vitro and in intact cells. Coimmunoprecipitation experiments reveal that Cx43 associates with c-SrcK(+) and, to a lesser extent, with wild-type c-Src, but not with kinase-dead c-Src. Mutation of residue Cx43 Tyr(265) (Cx43-Y265F mutant) abolishes both tyrosine phosphorylation of Cx43 and its coprecipitation with c-Src. Expression of c-SrcK(+) in Rat-1 cells disrupts gap junctional communication. Strikingly, the communication-defective phenotype is bypassed after coexpression of the Cx43-Y265F mutant or a COOH-terminally truncated version of Cx43 (Cx43Delta263) that lacks residue Tyr(265). Our results support a model in which activated c-Src phosphorylates the COOH-terminal tail of Cx43 on residue Tyr(265), resulting in a stable interaction between both proteins leading to inhibition of gap junctional communication.  相似文献   

11.
Previous studies showed that the pesticide lindane (gamma-hexachlorocyclohexane) inhibits gap junction intercellular communication in rat myometrial cells. The present study tested the hypothesis that lindane and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibit gap junction communication in rat myometrial and liver WBr-F344 cells by the common mechanism of increasing phosphorylation of the gap junction protein connexin43. We evaluated changes of connexin43 phosphorylation using Western blot of standard SDS-PAGE gels and cell immunostaining, and we monitored gap junction communication using microinjection and transfer of Lucifer yellow dye. Exposure of rat myometrial cells to lindane or TPA nearly abolished dye transfer but did not alter the electrophoretic mobility of connexin43, and neither lindane nor TPA increased phosphorylation of connexin43 as assessed by immunoblot with anti-phospho-connexin43 (S368) antibody. However, TPA increased punctate immunofluorescence staining of phospho-connexin43 (S368) in myometrial cells whereas lindane had no such effect. In WBr-F344 cells, lindane and TPA inhibited dye transfer. Lindane increased immunostaining for phospho-connexin43 (S368) in WBr-F344 cells without altering the abundance, electrophoretic mobility or phosphorylation of connexin43 as detected in immunoblots. TPA intensified a slower migrating connexin43 band and increased phospho-connexin43 (S368) in immunoblots, and intensified phospho-connexin43 immunostaining at WBr-F344 cell interfaces and nuclear regions. These results show that phosphorylation of connexin43 at serine 368 occurred in cell and toxicant specific manners and was independent of changes in electrophoretic mobility in standard SDS-PAGE gels. Moreover, lindane inhibited gap junction communication in myometrial cells by a mechanism that was not be explained by changes in phosphorylation of connexin43.  相似文献   

12.
Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.  相似文献   

13.
Gap junctions (GJs) traverse apposing membranes of neighboring cells to mediate intercellular communication by passive diffusion of signaling molecules. We have shown previously that cells endocytose GJs utilizing the clathrin machinery. Endocytosis generates cytoplasmic double-membrane vesicles termed annular gap junctions or connexosomes. However, the signaling pathways and protein modifications that trigger GJ endocytosis are largely unknown. Treating mouse embryonic stem cell colonies – endogenously expressing the GJ protein connexin43 (Cx43) – with epidermal growth factor (EGF) inhibited intercellular communication by 64% and activated both, MAPK and PKC signaling cascades to phosphorylate Cx43 on serines 262, 279/282, and 368. Upon EGF treatment Cx43 phosphorylation transiently increased up to 4-fold and induced efficient (66.4%) GJ endocytosis as evidenced by a 5.9-fold increase in Cx43/clathrin co-precipitation.  相似文献   

14.
We have previously reported that protein kinase C gamma (PKC-gamma) is activated by phorbol-12-myristate-13-acetate (TPA) and that this causes PKC-gamma translocation to membranes and phosphorylation of the gap junction protein, connexin 43 (Cx43). This phosphorylation, on S368 of Cx43, causes disassembly of Cx43 out of cell junctional plaques resulting in the inhibition of dye transfer. The purpose of this study is to identify the specific role of zonula occludens protein-1 (ZO-1), a tight junction protein with recently established effects on gap junctions, in this PKC-gamma-driven Cx43 disassembly. For this purpose, ZO-1 levels in lens epithelial cells in culture were decreased by up to 70% using specific siRNA. The down-regulation of ZO-1 caused a stable interaction of PKC-gamma with Cx43 even without normal enzyme activation by TPA. However, after TPA activation of the PKC-gamma, the Cx43 did not disassemble out of plaques even though the PKC-gamma enzyme was activated and the Cx43 was phosphorylated on S368. Confocal microscopy demonstrated that the siRNA treatment caused a loss of ZO-1 from borders of large junctional Cx43 cell-to-cell plaques and resulted in the accumulation of Cx43 aggregates inside of cells. Loss of the specific "plaquetosome" arrangement of large Cx43 plaques surrounded by ZO-1 was accompanied by a complete loss of functional dye transfer. These results suggest that ZO-1 is required for Cx43 control, both for dye transfer, and, for the PKC-gamma-driven disassembly response.  相似文献   

15.
The oncogenic tyrosine kinase, v-Src, phosphorylates connexin43 (Cx43) on Y247 and Y265 and inhibits Cx43 gap junctional communication (GJC), the process of intercellular exchange of ions and metabolites. To test the role of a negative charge on Cx43 induced by tyrosine phosphorylation, we expressed Cx43 with glutamic acid substitutions at Y247 or Y265. The Cx43Y247E or Cx43Y265E channels were functional in Cx43 knockout fibroblasts, indicating that introducing a negative charge on Cx43 was not likely the mechanism for v-Src disruption of GJC. Cells coexpressing v-Src and the triple serine to alanine mutant, Cx43S255/279/282A, confirmed that mitogen-activated protein (MAP) kinase phosphorylation of Cx43 was not required for v-Src-induced disruption of GJC and that tyrosine phosphorylation was sufficient. In addition, v-Src cells containing v-Src-resistant gap junctions, Cx43Y247/265F, displayed properties of cell migration, adhesion, and proliferation similar to Cx43wt/v-Src cells, suggesting that Cx43 tyrosine phosphorylation and disruption of GJC are not involved in these transformed cell properties.  相似文献   

16.
Previously we showed a rapid and transient inhibition of gap junctional communication (GJC) by platelet-derived growth factor (PDGF) in T51B rat liver epithelial cells expressing wild-type platelet-derived growth factor β receptors (PDGFrβ). This action of PDGF correlated with the hyperphosphorylation of the gap junction protein connexin43 (Cx43) and required PDGFrβ tyrosine kinase activity, suggesting the participation of protein kinases and phosphatases many of which are activated by PDGF treatment. In the present study, two such kinases, namely protein kinase C (PKC) and mitogen-activated protein kinase (MAPK), are investigated for their possible involvement in PDGF-induced closure of junctional channels and Cx43-phosphorylation. Down-regulation of PKC-isoforms by 12-O-tetradecanoylphorbol-13-acetate or pretreatment with the PKC inhibitor calphostin C, completely blocked PDGF action on GJC and Cx43. Activation of MAPK correlated with PDGF-induced Cx43 phosphorylation, and prevention of MAPK activation by PD98059 eliminated the PDGF effects. Interestingly, elimination of GJC recovery by cycloheximide was associated with a sustained activated-MAPK level. Based on these results we postulate that the activation of PKC and MAPK are required in PDGF-mediated Cx43 phosphorylation and junctional closure. J. Cell. Physiol. 176:332–341, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Fibroblast growth factor-2 (FGF-2) confers acute, preconditioning-like cardiac resistance to ischemic injury in a protein kinase C (PKC)-dependent fashion. One of the downstream targets of PKC is the gap junction protein connexin-43 (Cx43). We thus examined the effects of FGF-2 on Cx43 phosphorylation at specific PKC sites in the adult heart. Rat hearts perfused ex vivo for 20 min with an FGF-2-containing solution displayed increased levels of phosphorylated 44-45 kDa Cx43, assessed by western blotting. In addition, FGF-2 significantly upregulated phosphorylation of the PKC target serines 262 and 368 on Cx43 at intercalated disks, assessed using phosphospecific antibodies in immunolocalization and western blotting assays. Our data show that FGF-2, administered by perfusion, can alter the phosphorylation status of Cx43 at cardiomyocyte intercalated disks, and suggest a link between phosphorylation of Cx43 at specific PKC sites and FGF-2 cardioprotection.  相似文献   

18.
Fibroblast growth factor-2 (FGF-2) confers acute, preconditioning-like cardiac resistance to ischemic injury in a protein kinase C (PKC)-dependent fashion. One of the downstream targets of PKC is the gap junction protein connexin-43 (Cx43). We thus examined the effects of FGF-2 on Cx43 phosphorylation at specific PKC sites in the adult heart. Rat hearts perfused ex vivo for 20 min with an FGF-2-containing solution displayed increased levels of phosphorylated 44-45 kDa Cx43, assessed by western blotting. In addition, FGF-2 significantly upregulated phosphorylation of the PKC target serines 262 and 368 on Cx43 at intercalated disks, assessed using phosphospecific antibodies in immunolocalization and western blotting assays. Our data show that FGF-2, administered by perfusion, can alter the phosphorylation status of Cx43 at cardiomyocyte intercalated disks, and suggest a link between phosphorylation of Cx43 at specific PKC sites and FGF-2 cardioprotection.  相似文献   

19.
Phosphorylation of the gap junction protein connexin 43 (Cx43) by protein kinase C (PKC) decreases dye coupling in many cell types. We report an investigation of the regulation by PKC of Cx43 gap junctional hemichannels (GJH) expressed in Xenopus laevis oocytes. The activity of GJH was assessed from the uptake of hydrophilic fluorescent probes. PKC inhibitors increased probe uptake in isolated oocytes expressing recombinant Cx43, indicating that the regulatory effect occurs at the hemichannel level. We identified by mutational analysis the carboxy-terminal (CT) domain sequences involved in this response. We found that 1) Ser368 is responsible for the regulation of Cx43 GJH solute permeability by PKC-mediated phosphorylation, 2) CT domain residues 253-270 and 288-359 are not necessary for the effect of PKC, and 3) the prolinerich CT region is not involved in the effect of phosphorylation by PKC. Our results demonstrate that Ser368 (but not Ser372) is involved in the regulation of Cx43 solute permeability by PKC-mediated phosphorylation, and we conclude that different molecular mechanisms underlie the regulation of Cx43 by intracellular pH and PKC-mediated phosphorylation. protein kinase C blocker; dye loading; hemichannel  相似文献   

20.
One of the early events after stimulation of Swiss 3T3 cells with either platelet-derived growth factor (PDGF), 12-O-tetradecanoyl-phorbol-13-acetate (TPA), diacylglycerol, or several other mitogens is the near stoichiometric phosphorylation at tyrosine and serine of a scarce cytoplasmic protein (p42). TPA and diacylglycerol are known to directly stimulate the activity of a protein-serine/threonine kinase, protein kinase C (PKC). PDGF and several other mitogens stimulate tyrosine kinases directly and PKC indirectly. We have therefore examined the involvement of PKC in p42 tyrosine phosphorylation in Swiss 3T3 cells. Firstly, six agents which stimulated phosphorylation of p42 also stimulated phosphorylation of a known PKC substrate, an 80,000-Mr protein (p80). Secondly, in PKC-deficient cells (cells in which PKC activity was reduced to undetectable levels by prolonged exposure to TPA), PDGF-induced p42 phosphorylation was reduced three- to fourfold. Phosphoamino acid analysis of phosphorylated p42 from PDGF-stimulated PKC-deficient cells revealed primarily phosphoserine and only a trace of phosphotyrosine, suggesting that the reduction in PDGF-stimulated tyrosine phosphorylation of p42 resulting from PKC deficiency is greater than three- to fourfold. Finally, comparison of antiphosphotyrosine immunoprecipitates of PKC-deficient versus naive cells revealed that most other PDGF-induced tyrosine phosphorylation events were quite similar. These data suggest that mitogens such as PDGF, which directly stimulate phosphorylation of some proteins at tyrosine, induce p42 tyrosine phosphorylation via a cascade of events involving PKC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号