首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigates the effects of a chronic administration of diazepam, a benzodiazepine widely used as an anxiolytic, on locomotor activity and body core temperature rhythms in male Wistar rats housed under 12∶12 light∶dark (LD) cycle conditions. Diazepam was administered subcutaneously for 3 wks in a dosage of 3 mg/kg body weight/day, 1 h before the onset of darkness. Diazepam increased the level of locomotor activity from the first day until the end of treatment, and also increased the amplitude of the activity circadian rhythm, but only on the third wk of treatment. Diazepam exerted no effects on the length of the period and did not affect the phase of the locomotor activity rhythm. The body temperature rhythm of rats was affected neither by short‐term (a single injection) nor by long‐term (every day for 3 wks) diazepam treatment. Diazepam lacked effect on body core temperature even on the first day of administration, thereby ruling out the possibility of drug tolerance development. The fact that diazepam affects locomotor activity, but not core body temperature, suggests that different mechanisms mediate the actions of diazepam on locomotor activity and on core body temperature.  相似文献   

2.
The present study was conducted to evaluate the effect of a 7 d continuous infusion of ropivacaine on the 24 h rhythms of body temperature, heart rate, and locomotor activity. After an initial 7 d baseline, rats were randomly divided into two groups of 4 rats each to receive ropivacaine or saline via an osmotic pump for 7 consecutive days. The pumps were removed thereafter and observed during a 7 d recovery span. The studied circadian rhythms were measured by radiotelemetry throughout each of the 7 d periods. An additional group of 4 rats was studied under the same experimental conditions to assess the plasma levels of ropivacaine on days 3 and 8 following pump implantation. Our results indicate that ropivacaine does not induce loss of the circadian rhythms of body temperature, heart rate, or locomotor activity; a prominent period of 24 h was found for all variables in all animals, before, during, and after ropivacaine treatment. However, ropivacaine treatment did modify some characteristics of the rhythms; it increased the MESOR (24 h mean) of the heart rate and locomotor activity rhythms and advanced the acrophase (peak time) of the locomotor activity circadian rhythm. The present study indicates that the circadian rhythms of heart rate and locomotor activity are modified after continuous infusion of ropivacaine, which is of particular interest, given the potential cardiotoxicity of this local anesthetic agent.  相似文献   

3.
The effects of vinorelbine (VRL) on the circadian rhythms in body temperature and locomotor activity were investigated in unrestrained B6D2F1 mice implanted with radio-telemetry transmitters. A single intravenous VRL dose (24 or 12 mg/kg) was given at 7 h after light onset (HALO), a time of high VRL toxicity, and resulted in transient suppression of temperature and activity circadian rhythms in mice kept in light-dark (LD) 12h:12h. Such suppression was dose-dependent. It occurred within 1-5 d after VRL dosing. Recovery of both rhythms was partially complete within 5 d following the high dose and within 2 or 3 d after the low dose and was not influenced by suppression of photoperiodic synchronization by housing in continuous darkness. Moreover, VRL induced a dose-dependent relative decrease in amplitude and phase shift of the temperature circadian rhythm. The mesor and amplitude of the activity rhythm were markedly reduced following the VRL administration. The relevance of VRL dosing time was studied in mice housed in LD 12h:12h. Vinorelbine was injected weekly (20 mg/kg/injection) for 3 wk at 6 or 18 HALO. Vinorelbine treatment ablated the rest-activity and temperature rhythms 3-6 d after each dose, with fewer alterations after VRL dosing at 18 HALO compared to 6 HALO, especially for the body temperature rhythm. There was at least partial recovery 1 wk after dosing, suggesting the weekly schedule of drug treatment is acceptable for therapeutic purposes. Our findings demonstrate that VRL can transiently, yet profoundly, alter circadian clock function. Vinorelbine-induced circadian dysfunction may contribute to the toxicokinetics of this and possibly other anticancer drugs.  相似文献   

4.
Prolonged food deprivation is known to cause a fall in the core body temperature of homeotherms. In various species of small birds and mammals (body mass up to 2-3 kg), it has been shown that starvation-induced hypothermia is modulated by the circadian system, in the sense that hypothermia is observed primarily during the inactive phase of the daily activity cycle (i.e., during the night for diurnal animals and during the day for nocturnal animals), whereas relatively normal temperatures are recorded during the active phase. To investigate whether this modulation occurs also in larger animals, we investigated the effects of 4d food deprivation on the body temperature rhythm of goats and sheep (body mass 30-40 kg). In goats, the body temperature rhythm was found to have a mean level of 39.0°C with a mean daily range of excursion of 0.42°C. The daily oscillation in body temperature persisted during the first day of fasting, but the rhythm was drastically damped, if not eliminated, over the next 3 d as body temperature descended from the baseline level of 39.0 to 38.2°C. In sheep, the rhythm was found to have a mean level of 39.3°C with a mean daily range of excursion of 0.34°C. The daily oscillation in body temperature persisted through the 4 d of food deprivation, even though the mean level of body temperature gradually fell. Temperature fell more during the third and fourth nights than during the third and fourth days. Thus, circadian modulation of starvation-induced hypothermia was observed in sheep but not in goats.  相似文献   

5.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

6.
Entrainment to light of circadian activity rhythms in tench (Tinca tinca)   总被引:1,自引:0,他引:1  
The present article analyzes locomotor activity rhythms in Tinca tinca. To that end, three different experiments were conducted on 24 animals (20 g body weight) kept in pairs in 60-liter aquaria fitted with infrared sensors connected to a computer to continuously record fish movements. The first experiment was designed to study the endogenous circadian clock under free-running conditions [ultradian 40:40 min LD pulses and constant dark (DD)] and after shifting the LD cycle. Our results demonstrate that tench has a strictly nocturnal activity pattern, an endogenous rhythm being evident in 45.8% of the fish analyzed. The second experiment was conducted to test the influence of different photoperiods (LD 6:18, 12:12, 18:6, and 22:2) on locomotor activity, the results showing that even under an extremely long photoperiod, tench activity is restricted to dark hours. The third experiment examined the effect of light intensity on locomotor activity rhythms. When fish were exposed to decreasing light intensities (from 300:0 lux to 30:0, 3:0, and 0.3:0 lux) while maintaining a constant photoperiod (LD 12:12), the highest percentage of locomotor activity was in all cases associated with the hours of complete darkness (0 lux). In short, our results clearly show that (a) tench is a species with a strictly nocturnal behavior, and (b) daily activity rhythms gradually entrain after shifting the LD cycle and persist under free-running conditions, pointing to their circadian nature. However, light strongly influences activity rhythms, since (c) the length of the active phase is directly controlled by the photophase, and (d) strictly nocturnal behavior persists even under very dim light conditions (0.3 lux). The above findings deepen our knowledge of tench behavior, which may help to optimize the aquacultural management of this species, for example, by adjusting feeding strategies to their nocturnal behavior.  相似文献   

7.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6-9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6-9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

8.
Eight healthy subjects exercised at 90 watts on a cycle ergometer on four occasions, at times close to the minimum, maximum rate of rise, maximum, and maximum rate of fall of their resting core temperature. The duration of exercise was determined by the time taken for the core (rectal) temperature to reach an equilibrium value. Forearm skin blood flow and temperature were measured regularly during the exercise, as were heart rate and ratings of perceived exertion. Sweat loss was calculated by weighing the subjects nude before and after the exercise. The rise of heart rate was not significantly different at the four times of exercise, though the rating of perceived exertion was greatest at 05:00 h. Resting core temperatures showed a significant circadian rhythm at rest (the timing of which confirmed that exercise was being performed at the required times), but the amplitude of this rhythm was decreased significantly by the exercise. The initial rate of rise of core temperature, and the total rise from the resting to the equilibrium value, were both inversely proportional to resting temperature. The time-course of the rise was accurately described by a negative-exponential model, but this model gave no evidence that the kinetics of the equilibration process depended upon the time of day. The thermoregulatory responses to the rise in core temperature—the amount of total sweat loss and rises in forearm skin blood flow and temperature—differed according to the time of exercise. In general, the responses were significantly greater at 17:00 h compared with 05:00 h, and at 23:00 h compared with 11:00 h. The results accord with predictions made on the basis of previous work by us in which core temperature rhythms have been separated into components due to the endogenous body clock and due to the direct effects of spontaneous activity. The results are discussed in terms of the ecological implications of the differing capabilities of humans to deal with heat loads produced by spontaneous activity or mild exercise at different phases of the circadian rhythm of resting core temperature.  相似文献   

9.
Thiosulfate sulfurtransferase (TST) is an important 'enzyme of protection,' that accelerates the detoxification of cyanide, converting it into thiocyanate. The TST physiological rhythm was investigated at wks 2, 4, and 8 of post-natal development (PND) in the mouse. The results revealed a statistically significant gender-related difference, with the highest activity in females, at all the documented PND stages. In the second week of PND (pre-weaning time), the circadian rhythm of the enzyme activity was associated with ultradian components. The prominent circadian rhythm (τ=24 h) peaked at the beginning of the light span, more precisely ∼3 HALO (Hours After Light Onset). A week after weaning (wk 4 of PND), an impairment of the rhythm, with the peak shifted toward the second half of photophase, was recorded. Four to 6 wks later, about wk 8 of PND, the circadian rhythm pattern was stabilized, with its peak then located at the beginning of the dark span (13 HALO). The obtained results showed a 12 h phase-shift of the circadian TST peak time during PND, suggesting that the rhythm stabilization is age-dependent.  相似文献   

10.
The influence of stress and diazepam treatment on airway inflammation was investigated in ovalbumin (OVA)-sensitized rats. Animals were injected with OVA plus aluminum hydroxide intraperitoneally (day 0) and boosted with OVA subcutaneously (day 7). From the first to 13th day after sensitization, rats were treated with diazepam, and 1 h later they were placed in a shuttle box where they received 50 mild escapable foot shocks/day preceded by a sound signal (S). Response during the warning (S) canceled shock delivery and terminated the S. On day 14, rats were submitted to a single session of 50 inescapable foot shocks preceded by S and then were challenged with OVA. High levels of stress were detected in shocked animals, manifested as ultrasonic vocalizations. Morphometric analysis of stressed animals revealed a significant increase in both edema and lymphomononucleated cells in airways compared with controls. Diazepam treatment reduced edema in stressed and nonstressed rats. No differences were found in polymorphonucleated cell infiltration. Diazepam treatment reduced lymphomononucleated cell infiltration in stressed animals. These data suggest that stress and diazepam treatment play relevant roles in edema and lymphomononucleated airway inflammation in OVA-sensitized rats.  相似文献   

11.
The influence of diazepam on the mitotic activity of regenerating adrenal cortex in male Wistar rats was investigated. Diazepam administration (5 mg/kg/day) was shown to inhibit the mitotic index of adrenocortical cells on the 4th and 8th day after adrenal enucleation combined with contralateral adrenalectomy. The possible mechanism of diazepam action is discussed.  相似文献   

12.
Single 2h administration of diazepam (benzodiazepine) in 3.5% ethanol solution was found to evoke advance and delay phase shifts in the locomotor activity rhythm in the field mouseMus booduga. Through such pulsed administration of diazepam at various phases of circadian rhythm a phase response curve could be constructed. Phase advance occurred during early subjective day (CT 2) and phase delays were observed in the remaining phases. The shape of the diazepam phase response curve is similar to the general shape of the phase response curves generated by intraperitoneal injections of other benzodiazepines in hamsters. The phase shifting action of diazepam may be explained by its agonistic action on the neurotransmitter gamma-aminobutyric acid.  相似文献   

13.
The effect of ethanol and theophylline on the circadian rhythm of rat locomotion was investigated. Male Wistar rats synchronized to 12: 12 h light-dark cycles were divided into four groups for treatment with saline, ethanol, theophylline, and ethanol plus theophylline. Animals in each group were orally administered saline, ethanol (2.0 g/kg body wt), theophylline (10 mg/kg body wt), and ethanol plus theophylline, respectively, six times every 2 h during the 12-h light span. Spontaneous loco-motor activity was continuously monitored by an animal activity recorder at 15-min intervals. Total activity count, circadian rhythm characteristics of activity (amplitude, acrophase, and mesor), power spectral patterns, and slope of fluctuation (a measurement of ultradian periodicity) were calculated. Ethanol administration decreased the total activity count by 60% and phase-delayed the onset of activity rhythm by 9.5 h on the day after treatment. The absolute value of the slope of fluctuation was increased by ethanol administration. The mean recovery time evaluated by rhythm detection was 3.8 days. Theophylline administration increased the light phase activity, but caused no phase delay of the onset time of the locomotor activity rhythm. The decrease in total activity count and phase delay of onset of the activity rhythm caused by ethanol were partially antagonized by theophylline. However, the prolonged effects of ethanol, represented by a late recovery time and an increase in the slope of fluctuation, were not influenced by theophylline.  相似文献   

14.
The effect of ethanol and theophylline on the circadian rhythm of rat locomotion was investigated. Male Wistar rats synchronized to 12: 12 h light-dark cycles were divided into four groups for treatment with saline, ethanol, theophylline, and ethanol plus theophylline. Animals in each group were orally administered saline, ethanol (2.0 g/kg body wt), theophylline (10 mg/kg body wt), and ethanol plus theophylline, respectively, six times every 2 h during the 12-h light span. Spontaneous loco-motor activity was continuously monitored by an animal activity recorder at 15-min intervals. Total activity count, circadian rhythm characteristics of activity (amplitude, acrophase, and mesor), power spectral patterns, and slope of fluctuation (a measurement of ultradian periodicity) were calculated. Ethanol administration decreased the total activity count by 60% and phase-delayed the onset of activity rhythm by 9.5 h on the day after treatment. The absolute value of the slope of fluctuation was increased by ethanol administration. The mean recovery time evaluated by rhythm detection was 3.8 days. Theophylline administration increased the light phase activity, but caused no phase delay of the onset time of the locomotor activity rhythm. The decrease in total activity count and phase delay of onset of the activity rhythm caused by ethanol were partially antagonized by theophylline. However, the prolonged effects of ethanol, represented by a late recovery time and an increase in the slope of fluctuation, were not influenced by theophylline.  相似文献   

15.
In order to investigate the potential causal link between the rhythm of activity and body temperature, we simultaneously recorded rectal temperature and total locomotor activity in five clinically healthy female rabbits (blue Vienna breed), 12 week old and mean body weight 2.7 ± 0.3. Animals were housed in individual cages (90?×?50?×?35 cm) under natural 12/12 light/dark cycle. Total locomotor activity was monitored for 15 days by an activity data logger. On day 1, 5, 10, and 15 rectal temperature was recorded every 2 h for a 24-h period. Application of single cosinor method showed a nocturnal daily rhythm of rectal temperature with a range of oscillation of about 1 °C, acrophase after dusk and low robustness value. The daily rhythm of locomotor activity showed its acrophase in the middle of the scotophase and a high robustness value. This information improves the knowledge available on the circadian biology of rabbits useful in the evaluation of physiology of this species.  相似文献   

16.
Melatonin, cortisol, heart rate, blood pressure, spontaneous motor activity, and body temperature follow stable circadian rhythms in healthy individuals. These circadian rhythms may be influenced or impaired by the loss of external zeitgebers during analgosedation, critical illness, continuous therapeutic intervention in the intensive care unit (ICU), and cerebral injury. This prospective, observational, clinical study examined 24 critically ill analgo-sedated patients, 13 patients following surgery, trauma, or acute respiratory distress (ICU), and 11 patients with acute severe brain injury following trauma or cerebral hemorrhage (CCI). Blood samples for the determination of melatonin and cortisol were obtained from each patient at 2 h intervals for 24 h beginning at 18:00 h on day 1 and ending 16:00 h on day 2. Blood pressure, heart rate, body temperature, and spontaneous motor activity were monitored continuously. Level of sedation was assessed using the Ramsey Sedation Scale. The severity of illness was assessed using the APACHE-II-score. The time series data were analyzed by rhythm analysis with the Chronos-Fit program, using partial Fourier series with up to six harmonics. The 24 h profiles of all parameters from both groups of patients were greatly disturbed/abolished compared to the well-known rhythmic 24 h patterns in healthy controls. These rhythm disturbances were more pronounced in patients with brain injury. The results of this study provide evidence for a pronounced disturbance of the physiological temporal organization in ICU patients. The relative contribution of analgosedation and/or brain injury, however, is a point of future investigation.  相似文献   

17.
Light and temperature cycles are the most important synchronizers of biological rhythms in nature. However, the relative importance of each, especially when they are not in phase, has been poorly studied. The aim of this study was to analyze the entrainment of daily locomotor activity to light and/or temperature cycles in zebrafish. Under two constant temperatures (20°C and 26°C) and 12:12 light-dark (LD) cycles, zebrafish were most active during the day (light) time and showed higher total activity at the warmer temperature, while diurnalism was higher at 20°C than at 26°C (87% and 77%, respectively). Under thermocycles (12:12 LD, 26:20°C thermophase:chryophase or TC), zebrafish daily activity synchronized to the light phase, both when the thermophase and light phase were in phase (LD/TC) or in antiphase (LD/CT). Under constant dim light (3 lux), nearly all zebrafish synchronized to thermocycles (τ=24 h), although activity rhythms (60% to 67% of activity occurred during the thermophase) were not as marked as those observed under the LD cycle. Under constant dim light of 3 lux and constant temperature (22.5°C), 4 of 6 groups of zebrafish previously entrained to thermocycles displayed free-running rhythms (τ=22.9 to 23.6 h). These results indicate that temperature cycles alone can also entrain zebrafish locomotor activity.  相似文献   

18.
Parkinson's disease (PD) is a neurodegenerative disorder that also involves circadian rhythm alterations. Modifications of circadian rhythm parameters have been shown to occur in both PD patients and toxin-induced PD animal models. In the latter case, rotenone, a potent inhibitor of mitochondrial complex I (nicotinamide adenine dinucleotide [NADH]-quinone reductase), has been used to elicit degeneration of dopaminergic neurons and development of parkinsonian syndrome. The present work addresses alterations induced by rotenone on both locomotor and body temperature circadian rhythms in rats. Rotenone-treated rats exhibited abnormalities in equilibrium, postural instability, and involuntary movements. Long-term subcutaneous administration of rotenone significantly reduced mean daily locomotor activity in most animals. During rotenone administration, mean body temperatures (BTs) and BT rhythm amplitudes were significantly lower than those observed in the control group. After long-term rotenone administration, the circadian rhythms of both locomotor activity (LA) and BT displayed decreased amplitudes, lower interdaily phase stability, and higher rhythm fragmentation, as compared to the control rats. The magnitude of the LA and BT circadian rhythm alterations induced by rotenone positively correlated with degree of motor impairment. These results indicate that rotenone induces circadian dysfunction in rats through some of the same mechanisms as those responsible for the development of motor disturbances.  相似文献   

19.
The role of endogenous circadian rhythmicity in autonomic cardiac reactivity to different stressors was investigated. A constant routine protocol was used with repeated exposure to a dual task and a cold pressor test. The 29 subjects were randomly divided into two groups in order to manipulate prior wakefulness. Group 1 started at 09:00 h immediately after a monitored sleep period, whereas group 2 started 12 h later. Measures of interbeat intervals (IBI), respiratory sinus arrythmia (RSA, a measure of parasympathetic activity), pre-ejection period (PEP, a measure of sympathetic activity), as well as core body temperature (CBT) were recorded continuously. Multilevel regression analyses (across-subjects) revealed significant (mainly 24 h) sinusoidal circadian variation in the response to both stressors for IBI and RSA, but not for PEP. Individual 24 + 12 h cosine fits demonstrated a relatively large interindividual variation of the phases of the IBI and RSA rhythms, as compared to that of the CBT rhythm. Sinusoidal by group interactions were found for IBI and PEP, but not for RSA. These findings were interpreted as an indication for endogenous circadian and exogenous parasympathetic (vagal) modulation of cardiac reactivity, while sympathetic reactivity is relatively unaffected by the endogenous circadian drive and mainly influenced by exogenous factors.  相似文献   

20.
The adaptation of the endogenous rhythm of an organism to external cycles may influence the development of physiological processes in animals. Light not only synchronizes the circadian system, but also exerts profound direct effects: the immediate reduction of melatonin release at night-time and the inhibition of locomotor activity in nocturnal rodents after a light pulse are well-known examples, yet little is known about effects of different light/dark (LD) cycles on the level of corticosterone, growth hormone and growth rate. Mice were raised under different period length of LD cycle including LD5:5 (light: 5 h; dark: 5 h), LD12:12 (light: 12 h; dark: 12 h) and LD16:16 (light: 16 h; dark: 16 h) for four weeks. Mice in LD5:5 and LD16:16 groups manifested higher locomotor activity, plasma corticosterone and growth hormone concentrations and growth rate than the LD12:12 group. The results suggest that different LD cycles may affect many physiological processes including growth rate, food intake and hormones, and the change of growth rate in different LD cycles may be related to the level of corticosterone and growth hormone concentrations. The results also suggest that both the long-period LD cycle and short-period LD cycles can improve the growth of mice, but they disturbed the biorhythm stabilization and affected hormone secretion; in general, these conditions would not promote the animals' survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号