首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distler AM  Kerner J  Hoppel CL 《Proteomics》2008,8(19):4066-4082
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.  相似文献   

2.
Mitochondria are enveloped by two closely apposed boundary membranes with different properties and functions. It is known that they undergo fusion and fission, but it has remained unclear whether outer and inner membranes fuse simultaneously, coordinately or separately. We set up assays for the study of inner and outer membrane fusion in living human cells. Inner membrane fusion was more sensitive than outer membrane fusion to inhibition of glycolysis. Fusion of the inner membrane, but not of the outer membrane, was abolished by dissipation of the inner membrane potential with K+ (valinomycin) or H+ ionophores (cccp). In addition, outer and inner membrane fusion proceeded separately in the absence of any drug. The separate fusion of outer and inner membranes and the different requirements of these fusion reactions point to the existence of fusion machineries that can function separately.  相似文献   

3.
4.
Tim23, a key component of the mitochondrial preprotein translocase, is anchored in the inner membrane by its C-terminal domain and exposes an intermediate domain in the intermembrane space that functions as a presequence receptor. We show that the N-terminal domain of Tim23 is exposed on the surface of the outer membrane. The two-membrane-spanning topology of Tim23 is a novel characteristic in membrane biology. By the simultaneous integration into two membranes, Tim23 forms contacts between the outer and inner mitochondrial membranes. Tethering the inner membrane translocase to the outer membrane facilitates the transfer of precursor proteins from the TOM complex to the TIM23 complex and increases the efficiency of protein import.  相似文献   

5.
Rapid kinetic studies of filipin binding to intact cells and isolated membranes were performed with a stopped-flow apparatus to determine the distribution of cholesterol in the outer and inner surfaces of mycoplasma membranes. The initial rates of association of filipin with cholesterol in Mycoplasma gallisepticum and Mycoplasma capricolum intact cells were slower than those obtained with isolated membrane preparations. Ratios of the second-order rate constants for filipin binding to cells relative to membranes indicate that cholesterol is distributed symmetrically in membranes of M. gallisepticum cells whereas in M. capricolum ~66% of the free cholesterol is localized in the outer half of the lipid bilayer.  相似文献   

6.
The separation of inner and outer membrane of Rhodopseudomonas spheroides has been achieved by means of sucrose density gradient (20%, 40%, 60%, w/w) centrifugation. The upper fraction of the gradient, with a specific density 1.181 (g/cm3), is high in cytochrome and succinate dehydrogenase activities, low in lipopolysaccharides and it is designated the inner membrane fraction. The bottom fraction of the gradient, with a specific density 1.240, is high in lipopolysaccharide and contains neither cytochrome nor succinate dehydrogenase activities. This fraction is the cell wall or outer membrane fraction. The intermediate band on the gradient is an unseparated fraction of inner and outer membrane fragments. This fraction has a specific denisty of 1.211 and represents less than 3% of total crude envelope. Thin sections of the vesicles of the inner membrane fraction and those of outer membrane provide morphological evidence for the identity of the individual membrane fractions. At least 22 protein bands are resolved by employing sodium dodecyl sulfate slab gel electrophoresis. Six bands are present only in the inner membrane and two bands are found exclusively in the outer membrane. Most of the remaining polypeptides are present in greater amounts in the inner membrane relative to the outer membrane fractions.  相似文献   

7.
Rat liver mitochondrial inner and outer membranes were subjected to the solubilizing effect of the nonionic detergent Triton X-100 under various conditions. After centrifugation, the supernatants (containing the solubilized fraction) and pellets were characterized chemically and/or ultrastructurally. The detergent seems to act by inducing a phase transition from membrane lamellae to mixed protein-lipid-detergent micelles. Different electron-micro-scopy patterns are shown by the inner membranes after treatment with different amounts of surfactant, whereas the corresponding images from outer membranes vary but slightly. Selective solubilization of various components is observed, especially in the case of the inner membrane. Some membrane lipids (e.g., cardiolipin) are totally solubilized at detergent concentrations when others, such as sphyngomyelin, remain in the membrane. Other inner-membrane components (flavins, cytochromes, coenzymeQ) show different solubilization patterns. This allows the selection of conditions for optimal solubilization of a given membrane component with some degree of selectivity. The influence of Triton X-100 on various mitochondrial inner-membrane enzyme activities was studied. The detergent seems to act especially through disruption of the topology of the functional complexes, although the activity of the individual enzymes appears to be preserved. Relatively simple enzyme activities, such as ATPase, are more or less solubilized according to the detergent concentration, whereas the more complex succinate-cytochromec reductase activity practically disappears even at low Triton X-100 concentrations.  相似文献   

8.
The process of importing nuclear encoded proteins into chloroplasts is mediated by the T ranslocons on the O uter/I nner Envelope of C hloroplasts (TOC and TIC complex). The ancestor of the TOC complex was formed by pre‐existing proteins from the cyanobacterial ancestor; other proteins recruited from the host cell or cyanobacterial ancestor were subsequently integrated into the complex. However, little is known about the origin of the TIC complex. In this work, the origin of the TIC complex was investigated through one of its channel proteins, AtTic21. Phylogenetic analysis suggested that AtTic21 is conserved in photosynthetic organisms. AtTic21 showed 33% sequence identity to a Synechocystis protein SynTic21. The successful genetic complementation of an AtTic21 knockout mutant by SynTic21 plus the transit peptide coding sequence of AtTic21 suggested that SynTic21 is an ortholog of AtTic21. The sequence and functional conservation between SynTic21 and AtTic21 suggested that the TIC complex shares a similar evolutionary origin to the TOC complex.  相似文献   

9.
Morphogenesis of the filamentous bacteriophage f1 occurred at adhesion zones between the inner and outer membranes of the host cell. Quantitation of adhesion zones in cells infected with mutant phage strains suggested that the phage gene I protein may be involved in the formation of adhesion zones for phage assembly.  相似文献   

10.
11.
《Plant Science Letters》1976,6(4):215-221
Experiments on dissociation and reassociation of outer and inner membranes of cauliflower (Brassica oleracea L.) mitochondria have been carried out in order to investigate the possible occurrence of an intermembrane electron transfer. With NADH as electron donor, it has been shown that electron transfer can take place between an antimycin-insensitive NADH-cytochrome c reductase, on the outer membrane, and the cyanide-sensitive cytochrome oxidase, on the inner membrane, provided a mobile carrier such as cytochrome c is present in the intermembrane space. In intact plant mitochondria, part of the oxidation of exogenous NADH could be carried out by this pathway.  相似文献   

12.
13.
14.
15.
16.
17.

Background

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings

We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation.

Conclusions

We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage.  相似文献   

18.
19.
The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [gamma-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [gamma-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110,000 x g centrifugation.  相似文献   

20.
Escherichia coli outer membranes were prepared by centrifugation to equilibrium in sucrose gradients and then treated with Sarkosyl in the presence of ethylenediaminetetraacetate. The polypeptide profiles of the two outer membrane preparations were compared by two-dimensional polyacrylamide gel electrophoresis. The patterns obtained were not identical, and Sarkosyl removed several minor proteins from the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号