首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59, ts43 and ts379, have been described previously to be ts in infectivity but unaffected in RNA synthesis (M. J. M. Koolen, A. D. M. E. Osterhaus, G. van Steenis, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 125:393-402, 1983). We present a detailed analysis of the protein synthesis of the mutant viruses at the permissive (31 degrees C) and nonpermissive (39.5 degrees C) temperatures. It was found that synthesis of the nucleocapsid protein N and the membrane protein M of both viruses was insensitive to temperature. However, the surface protein S of both viruses was retained in the endoplasmic reticulum at the nonpermissive temperature. This was shown first by analysis of endoglycosidase H-treated and immunoprecipitated labeled S proteins. The mature Golgi form of S was not present at the nonpermissive temperature for the ts viruses, in contrast to wild-type (wt) virus. Second, gradient purification of immunoprecipitated S after pulse-chase labeling showed that only wt virus S was oligomerized. We conclude that the lack of oligomerization causes the retention of the ts S proteins in the endoplasmic reticulum. As a result, ts virus particles that were devoid of S were produced at the nonpermissive temperature. This result could be confirmed by biochemical analysis of purified virus particles and by electron microscopy.  相似文献   

2.
Glycosyl phosphatidylinositol (GPI) anchoring, N glycosylation, and O mannosylation of protein occur in the rough endoplasmic reticulum and involve transfer of precursor structures that contain mannose. Direct genetic evidence is presented that dolichol phosphate mannose (Dol-P-Man) synthase, which transfers mannose from GDPMan to the polyisoprenoid dolichol phosphate, is required in vivo for all three biosynthetic pathways leading to these covalent modifications of protein in yeast cells. Temperature-sensitive yeast mutants were isolated after in vitro mutagenesis of the yeast DPM1 gene. At the nonpermissive temperature of 37 degrees C, the dpm1 mutants were blocked in [2-3H]myo-inositol incorporation into protein and accumulated a lipid that could be radiolabeled with both [2-3H]myo-inositol and [2-3H]glucosamine and met existing criteria for an intermediate in GPI anchor biosynthesis. The likeliest explanation for these results is that Dol-P-Man donates the mannose residues needed for completion of the GPI anchor precursor lipid before it can be transferred to protein. Dol-P-Man synthase is also required in vivo for N glycosylation of protein, because (i) dpm1 cells were unable to make the full-length precursor Dol-PP-GlcNAc2Man9Glc3 and instead accumulated the intermediate Dol-PP-GlcNAc2Man5 in their pool of lipid-linked precursor oligosaccharides and (ii) truncated, endoglycosidase H-resistant oligosaccharides were transferred to the N-glycosylated protein invertase after a shift to 37 degrees C. Dol-P-Man synthase is also required in vivo for O mannosylation of protein, because chitinase, normally a 150-kDa O-mannosylated protein, showed a molecular size of 60 kDa, the size predicted for the unglycosylated protein, after shift of the dpm1 mutant to the nonpermissive temperature.  相似文献   

3.
We examined the incorporation of radioactive amino acids into nuclear proteins occurring at nonpermissive conditions in tsH1 Chinese hamster ovary cells with a temperature-sensitive defect in cytosol nonmitochondrial protein synthesis. In leucine-free medium at 40 degrees C, total cellular protein synthesis declined by 1-1.5%/min. As reported by others, preincubating these cells at 42 degrees C for 5-10 min sharply increased the rate of decline. The synthesis of acidic nuclear proteins at nonpermissive conditions (40 degrees C + 300 micrograms/ml cycloheximide) was demonstrated by the nuclear incorporation of 3H-tryptophan. Radioactivity, seen by autoradiography to be associated with these isolated Triton-X-100-washed nuclei, was released after incubating labelled nuclei with proteolytic enzymes. During incubation of tsH1 cells at nonpermissive conditions, pulse/chase experiments were consistent with the loss of some nuclear radioactivity into the cytoplasm. The distribution of cytosol and nuclear proteins, labelled at permissive or nonpermissive conditions and separated by isoelectric focusing, differed quantitatively and probably qualitatively, confirming the residual synthesis of acidic nuclear proteins at 40 degrees C in the presence of cycloheximide. Most newly synthesized acidic proteins retained by nuclei from cells labeled at nonpermissive conditions were present in a transciptionally active chromatin fraction. Although under these conditions the apparent rate of cellular RNA synthesis was unchanged, inhibiting residual cycloheximide-resistant nuclear protein synthesis with puromycin proportionately reduced RNA synthesis. Preincubating cells with 20 micrograms/ml of actinomycin D did not inhibit residual labelling of nuclear proteins; effects on residual nuclear labelling of impaired mitochondrial respiration were ambiguous. Nuclear proteins labelled under nonpermissive conditions probably included some of the 'prompt' heat shock proteins recently described. Provided certain assumptions are correct, our results are consistent with very limited protein synthesis associated with and even intrinsic to cell nuclei. They also suggest that this residual cycloheximide-resistant protein synthesis could be concerned with optimum synthesis or processing of certain nuclear RNA species.  相似文献   

4.
A temperature-sensitive mutant (ts3) of Newcastle disease virus was physiologically characterized. All major viral structural proteins were synthesized at the permissive (37 degrees C) and nonpermissive (42 degrees C) temperatures, but the fusion (F) glycoprotein was not cleaved at 42 degrees C. In immunocytochemical electron microscopy, the F protein was abundant in the rough endoplasmic reticulum but not in cytoplasmic membrane at 42 degrees C. Noninfectious hemagglutinating virus particles containing all major structural proteins except the F protein were released at 42 degrees C from infected cells. We concluded that the defect in ts3 resides in the intracellular processing of the F protein.  相似文献   

5.
It was previously demonstrated that the epidermal growth factor (EGF) receptor in human A431 cells undergoes a slow post-translational modification by which it acquires EGF binding capacity (Slieker, L.J., and Lane, M.D. (1985) J. Biol. Chem. 260, 687-690). In this report, the role of glycosylation in the acquisition of ligand binding activity and in the intracellular translocation of the receptor precursor is characterized. Human A431 cells were incubated with [35S]methionine, and 35S-labeled EGF receptors were purified either by immunoprecipitation (total receptor) or by adsorption to an EGF affinity matrix (high affinity, or active receptor). The half-time for receptor activation is approximately 30 min and precedes its acquisition of resistance to endo-beta-N-acetylglucosaminidase H (t 1/2 = 75 min), a medial Golgi event. Activation is blocked by tunicamycin and is markedly slowed (t 1/2 = 120 min) by 1-deoxynojirimycin, an inhibitor of glucosidase I. In the latter case, the oligosaccharide chains are not further processed to complex forms. Treatment of the active high mannose receptor with endo-beta-N-acetylglucosaminidase H generates a fully active aglycoreceptor polypeptide, indicating that core oligosaccharide addition is a prerequisite for activation but that oligosaccharide chains are not intrinsically required for EGF binding. Subcellular fractionation studies showed that the EGF receptor is activated in the endoplasmic reticulum and that translocation from that organelle is extremely slow (t 1/2 = 75 min). Since the latter translocation rate approximates that for the acquisition of the resistance to endoglycosidase H, transit from the endoplasmic reticulum appears to be rate-limiting for the maturation of the receptor. Both tunicamycin and 1-deoxynojirimycin inhibit exit from the endoplasmic reticulum in parallel with their effects on the acquisition of binding activity. Immunoprecipitation of 35S-labeled EGF receptor with antiphosphotyrosine antibody in the presence of ATP suggested that the autophosphorylation activity of the receptor is also acquired post-translationally. The possible correlation of this to EGF binding activity is discussed.  相似文献   

6.
A temperature-sensitive mutant with a defect in glycoprotein synthesis and a cell cycle (G1)-specific arrest at the nonpermissive temperature (Tenner et al., J. Cell. Physiol., 90:145-160, 1977; Tenner and Scheffler, J. Cell. Physiol., 98:251-266, 1979) was investigated further after a human epidermal growth factor (EGF) receptor gene had been transfected and amplified in these cells. While a temperature shift-up lead to an immediate arrest in the biosynthesis of mature EGF receptor and its appearance on the plasma membrane, the observed turnover of the preexisting receptor was too slow to account for the arrest of DNA synthesis in these mutant cells. Tunicamycin could in fact mimic the effect of a temperature shift on the biosynthesis of EGF receptor, but it did not have the same rapid effect on DNA synthesis and cell cycle progression. These mutants have also been shown to induce a set of stress proteins or glucose-regulated proteins, GRPs (Lee et al., J. Cell. Physiol., 129:277-282, 1986). The question is addressed whether the defect in glycoprotein synthesis is the primary defect and a possible cause of the induction of the GRPs, or whether a more basic defect at the level of the endoplasmic reticulum (ER) is responsible for the complex phenotype of the mutant. Our results argue in favor of a primary defect which indirectly affects N-linked glycosylation of proteins, as well as several other functions associated with the ER. We hypothesize that the defect affects the calcium distribution between ER and cytosol, since the calcium ionophore A23187 has an effect similar to that of a temperature shift.  相似文献   

7.
We have characterized the process by which the vesicular stomatitis virus (VSV) G protein acquires its final oligomeric structure using density-gradient centrifugation in mildly acidic sucrose gradients. The mature wild-type VSV G protein is a noncovalently associated trimer. Trimers are assembled from newly synthesized G monomers with a t1/2 of 6-8 min. To localize the site of trimerization and to correlate trimer formation with steps in transport between the endoplasmic reticulum (ER) and Golgi complex, we examined the kinetics of assembly of the temperature-sensitive mutant VSV strain, ts045. At the nonpermissive temperature (39 degrees C), ts045 G protein is not transported from the ER. The phenotypic defect that inhibited export from the ER at the nonpermissive temperature was found to be the accumulation of ts045 G protein in an aggregate. After being shifted to the permissive temperature (32 degrees C), the ts045 G protein aggregate rapidly dissociated (t1/2 less than 1 min) to monomeric G protein which subsequently trimerized with the same kinetics as the wild-type G protein. Only trimers were transported to the Golgi complex. Kinetic studies, as well as the finding that trimerization occurred under conditions which block ER to Golgi transport (at both 15 and 4 degrees C), showed that trimers were formed in the ER. Depletion of cellular ATP inhibited both the dissociation of the aggregated intermediate of ts045 G protein as well as the formation of stable trimers. The results indicate that oligomerization of G protein occurs in several steps, is sensitive to cellular ATP, and is required for transport from the ER.  相似文献   

8.
Members of the syntaxin protein family participate in the docking-fusion step of several intracellular vesicular transport events. Tlg1p has been identified as a nonessential protein required for efficient endocytosis as well as the maintenance of normal levels of trans-Golgi network proteins. In this study we independently describe Tlg1p as an essential protein required for cell viability. Depletion of Tlg1p in vivo causes a defect in the transport of the vacuolar protein carboxypeptidase Y through the early Golgi. Temperature-sensitive (ts) mutants of Tlg1p also accumulate the endoplasmic reticulum/cis-Golgi form of carboxypeptidase Y at the nonpermissive temperature (38 degrees C) and exhibit underglycosylation of secreted invertase. Overexpression of Tlg1p complements the growth defect of vti1-11 at the nonpermissive temperature, whereas incomplete complementation was observed with vti1-1, further suggesting a role for Tlg1p in the Golgi apparatus. Overexpression of Sed5p decreases the viability of tlg1 ts mutants compared with wild-type cells, suggesting that tlg1 ts mutants are more susceptible to elevated levels of Sed5p. Tlg1p is able to bind His6-tagged Sec17p (yeast alpha-SNAP) in a dose-dependent manner and enters into a SNARE complex with Vti1p, Tlg2p, and Vps45p. Morphological analyses by electron microscopy reveal that cells depleted of Tlg1p or tlg1 ts mutants incubated at the restrictive temperature accumulate 40- to 50-nm vesicles and experience fragmentation of the vacuole.  相似文献   

9.
Saccharomyces cerevisiae cells grown at 24 degrees C acquire thermotolerance and survive exposure to 50 degrees C, but only if they are first incubated at 30 degrees C, the temperature where heat shock genes are activated. We show here that the enzymatic activity of a secretory beta-lactamase fusion protein, pre-accumulated at 37 degrees C in the endoplasmic reticulum, was abolished by exposure of the cells to 50 degrees C. When the cells were returned to 24 degrees C, beta-lactamase activity was resumed. Reactivation occurred in the endoplasmic reticulum, but not in the Golgi apparatus. It was dependent on metabolic energy, but did not require de novo protein synthesis. According to co-immunoprecipitation experiments, immuno-globulin-binding protein (BiP/Kar2p) was associated with the fusion protein. We suggest that recovery from thermal insult involves, in addition to cytoplasmic and nuclear events, refolding of heat-damaged proteins in the endoplasmic reticulum by a heat-resistant machinery, which forms part of a fundamental survival mechanism.  相似文献   

10.
An immunoelectron microscopic study was undertaken to survey the intracellular pathway taken by the integral membrane protein (G-protein) of vesicular stomatitis virus from its site of synthesis in the rough endoplasmic reticulum to the plasma membrane of virus-infected Chinese hamster ovary cells. Intracellular transport of the G-protein was synchronized by using a temperature-sensitive mutant of the virus (0-45). At the nonpermissive temperature (39.8 degrees C), the G-protein is synthesized in the cell infected with 0-45, but does not leave the rough endoplasmic reticulum. Upon shifting the temperature to 32 degrees C, the G-protein moves by stages to the plasma membrane. Ultrathin frozen sections of 0-45-infected cells were prepared and indirectly immunolabeled for the G-protein at different times after the temperature shift. By 3 min, the G-protein was seen at high density in saccules at one face of the Golgi apparatus. No large accumulation of G-protein-containing vesicles were observed near this entry face, but a few 50-70-mm electron-dense vesicular structures labeled for G-protein were observed that might be transfer vesicles between the rough endoplasmic reticulum and the Golgi complex. At blebbed sites on the nuclear envelope at these early times there was a suggestion that the G-protein was concentrated, these sites perhaps serving as some of the transitional elements for subsequent transfer of the G-protein from the rough endoplasmic reticulum to the Golgi complex. By 3 min after its initial asymmetric entry into the Golgi complex, the G-protein was uniformly distributed throughout all the saccules of the complex. At later times, after the G-protein left the Golgi complex and was on its way to the plasma membrane, a new class of G-protein-containing vesicles of approximately 200-nm diameter was observed that are probably involved in this stage of the transport process. These data are discussed, and the further prospects of this experimental approach are assessed.  相似文献   

11.
Oculocutaneous albinism type 1TS is caused by mutations that render the melanocyte-specific enzyme tyrosinase temperature-sensitive (ts); the enzyme is inactive in cells grown at 37 degrees C but displays full activity in cells grown at 31 degrees C. To distinguish whether the ts phenotype of the common R402Q variant of human tyrosinase is due to altered enzymatic activity or to misfolding and a defect in intracellular trafficking, we analyzed its localization and processing in transiently transfected HeLa cells. R402Q tyrosinase accumulates in the endoplasmic reticulum (ER) at 37 degrees C but exits the ER and accumulates in endosomal structures in cells grown at 31 degrees C. The inability of the R402Q variant to exit the ER is confirmed by the failure to acquire endoglycosidase H resistance at 37 degrees C and cannot be accounted for solely by enhanced proteasome-mediated degradation. ER retention at 37 degrees C is mediated by the lumenal domain of R402Q tyrosinase, is not dependent on tethering to the membrane, and is irreversible. Finally, a wild-type allelic form of tyrosinase is partially ts in transiently transfected HeLa cells. The data show that human tyrosinase expressed in non-melanogenic cells folds and exits the ER inefficiently and that R402Q tyrosinase exaggerates this defect, resulting in a failure to exit the ER at physiologic temperatures.  相似文献   

12.
Mutant V.24.1, a temperature-sensitive derivative of Chinese hamster ovary cells, defines the End4 complementation group of mutants selected for resistance to protein toxins and has defective lysosomes at the restrictive temperature (P. A. Colbaugh, M. Stookey, and R. K. Draper, J. Cell Biol. 108:2211-2219, 1989). We have investigated the biosynthesis of Sindbis virus envelope glycoproteins in V.24.1 cells. When the cells were infected at the restrictive temperature, the envelope glycoproteins E1 and E2 were undetectable on the cell surface and proteolytic processing of the precursor protein pE2 to envelope protein E2 did not occur. Protein retained intracellularly was sensitive to endoglycosidase H and, by immunofluorescence localization, appeared to accumulate in the endoplasmic reticulum. We conclude that the genetic defect in V.24.1 cells impairs the transport of Sindbis virus glycoproteins, apparently at the level of export from the endoplasmic reticulum.  相似文献   

13.
The intracellular migration of G protein in vesicular stomatitis virus-infected cells was visualized by light and electron microscope radioautography after a 2-min pulse with [3H]mannose followed by nonradioactive chase for various intervals. The radioactivity initially (at 5-10 min) appeared predominantly in the endoplasmic reticulum, and the [3H]mannose-labeled G protein produced was sensitive to endoglycosidase H. Silver grains were subsequently (at 30-40 min) observed over the Golgi apparatus, and the [3H]mannose-labeled G protein became resistant to endoglycosidase H digestion. Our data directly demonstrate the intracellular transport of a plasmalemma-destined transmembrane glycoprotein through the Golgi apparatus.  相似文献   

14.
15.
Efficient protein folding and trafficking are essential for high-level production of secretory proteins. Slow folding or misfolding of proteins can lead to secretory bottlenecks that reduce productivity. We previously examined the expression of a hyperthermophilic tetramer Pyrococcus furiosus beta-glucosidase in the yeast Saccharomyces cerevisiae. A secretory bottleneck was found in the endoplasmic reticulum, presumably due to beta-glucosidase misfolding. By increasing expression temperature from 30 degrees C up to 40 degrees C, secretion yields increased by as much as 440% per cell to greater than 100 mg/L at 37 degrees C. We examined the effect of temperature on beta-glucosidase folding and secretion and determined that increased expression temperature decreased intracellularly retained, insoluble beta-glucosidase. Likewise, stress on the cell caused by beta-glucosidase expression was found to be greatly reduced at 37 degrees C compared to 30 degrees C. Levels of the abundant endoplasmic reticulum chaperone, BiP, were relatively unchanged at these temperatures during heterologous expression. Using cycloheximide to inhibit new protein synthesis, we determined that the increase in secretion is likely due to the effect of temperature on the beta-glucosidase itself rather than the cell's response to elevated temperatures. We believe that this is the first evidence of in vivo effects of temperature on the secretion of hyperthermophilic proteins.  相似文献   

16.
17.
A temperature-sensitive mutant of Chinese hamster cells is described which has two interesting properties: (1) it is a cell cycle mutant and (2) glycoprotein synthesis appears to be affected at the at the non-permissive temerature (40degreesC). Synchronized cells shifed to 40degreesC in the beginning of their G1 phase do not incorporate [3H]-thymidine into DNA during the expected S-phase, but once DNA synthesis has been initiated ( approximately 10 hours after termination of serum starvation) a shift to 40 degrees C no longer leads to an arrest of DNA synthesis. Flow microfluorimetric analysis of DNA content/cell supports this conclusion and indicates that a majority of cells become arrested in the G1 phase of the cell cycle when a non-synchronized population of cells is transferred to 40degreesC. Apparently at all times in the cell cycle there is a drastic reduction if incorporation of labeled sugars (particularly fucose) into glycoproteins. The uptake of fucose and its conversion to GDP-fucose appears to be normal at 40degreesC. Chromatographic analysis indicates that all classes of glycoproteins are affected, and we do not find any evidence for partially completed oligosaccharides at 40 degrees C. Overall protein synthesis is not reduced at he nonpermissive temperature during the time interval under consideration and the number of polysomes attached to membranes (RER) is also normal at 40degreesC. This suggests that the defect is at an early step in the synthesis or regulation of synthesis of glycoproteins. The mutation is a recessive mutation in hybrid cells and mutagen induced revertants can be obtained which grow normally at 40degreesC and in which glycoprotein synthesis at 40 degrees C is restored to normal, wild type levels.  相似文献   

18.
19.
The intracellular pathway followed by the influenza virus hemagglutinin (HA) to the apical surface of Madin-Darby canine kidney cells was studied by radioimmunoassay, immunofluorescence, and immunoelectron microscopy. To synchronize the migration, we used a temperature- sensitive mutant of influenza WSN, ts61, which, at the nonpermissive temperature, 39.5 degrees C, exhibits a defect in the HA that prevents its exit from the endoplasmic reticulum. Upon transfer to permissive temperature, 32 degrees C, the HA appeared in the Golgi apparatus after 10 min, and on the apical surface after 30-40 min. In the presence of cycloheximide, the expression was not inhibited, indicating that the ts defect is reversible; a wave of HA migrated to the cell surface, where it accumulated with a half time of 60 min. After passage through the Golgi apparatus the HA was detected in a population of smooth vesicles, about twice the size of coated vesicles, located in the apical half of the cytoplasm. These HA-containing vesicles did not react with anti- clathrin antibodies. Monensin (10 microM) delayed the surface appearance of HA by 2 h, but not the transport to the Golgi apparatus. Incubation at 20 degrees C retarded the migration to the Golgi apparatus by approximately 30 min and blocked the surface appearance by acting at a late stage in the intracellular pathway, presumably at the level of the post-Golgi vesicles. The initial appearance of HA on the apical surface was in the center; no preference was observed for the tight-junctional regions.  相似文献   

20.
Two temperature-sensitive (ts) mutants of the M protein of vesicular stomatitis virus (tsG31 and tsG33) are defective in viral assembly, but the exact nature of this defect is not known. When infected cells are switched from nonpermissive (40 degrees C) to permissive (32 degrees C) temperatures in the presence of cycloheximide, tsG33 virus release increased by 100-fold, whereas tsG31 release increased only by 10-fold. Thus, the tsG33 defect is more reversible than that of tsG31. Therefore, we investigated how the altered synthesis and cellular distribution of tsG33 M protein correlates with the viral assembly defect. At 32 degrees C tsG33 M protein is stained diffusely in the cell cytoplasm and later at the budding sites. In contrast, at 40 degrees C the mutant M protein formed unusual aggregates mostly located in the perinuclear regions of virus-infected cells and partially colocalized with G protein in this region. In temperature shift-down experiments, M can be disaggregated and used to some extent for nucleocapsid coiling and budding, which correlates with the virus titer increase. M aggregates also formed after shift-up from 32 to 40 degrees C, indicating a complete dependence of M aggregation on the temperature. Biochemical analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting revealed that at 40 degrees C M protein is detected exclusively in pellet fractions (nuclear and cytoskeleton components), whereas at 32 degrees C M protein is mainly in the cytoplasmic soluble fractions. Furthermore, when the temperature is raised from 32 to 40 degrees C, the distribution of M protein tends to shift from the soluble to the pellet and cytoskeletal fractions. Electron micrographs of immunoperoxidase-labeled M protein showed that at 40 degrees C M aggregates are often associated with the outer nuclear membranes as well as with vesicular structures. No nucleocapsid coiling was observed in these cells, whereas coiling and budding were seen at 32 degrees C in cells where M protein was partly associated with the plasma membrane. We suggest that the tsG33 M protein mutation may produce a reversible conformational alteration which causes M protein to aggregate at 40 degrees C, therefore inhibiting the proper association of M protein with nucleocapsids and budding membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号